Information Retrieval
Implementing and Evaluating Search Engines

Stefan Büttcher
Google Inc.

Charles L. A. Clarke
University of Waterloo

Gordon V. Cormack
University of Waterloo

The MIT Press
Cambridge, Massachusetts
London, England
1.6 Further Reading 28
1.7 Exercises 30
1.8 Bibliography 32

2 Basic Techniques 33

2.1 Inverted Indices 33
 2.1.1 Extended Example: Phrase Search 35
 2.1.2 Implementing Inverted Indices 39
 2.1.3 Documents and Other Elements 45

2.2 Retrieval and Ranking 51
 2.2.1 The Vector Space Model 54
 2.2.2 Proximity Ranking 60
 2.2.3 Boolean Retrieval 63

2.3 Evaluation 66
 2.3.1 Recall and Precision 67
 2.3.2 Effectiveness Measures for Ranked Retrieval 68
 2.3.3 Building a Test Collection 73
 2.3.4 Efficiency Measures 75

2.4 Summary 76
2.5 Further Reading 77
2.6 Exercises 79
2.7 Bibliography 82

3 Tokens and Terms 84

3.1 English 85
 3.1.1 Punctuation and Capitalization 85
 3.1.2 Stemming 86
 3.1.3 Stopping 89

3.2 Characters 91
3.3 Character N-Grams 92
3.4 European Languages 94
3.5 CJK Languages 95

3.6 Further Reading 97
3.7 Exercises 99
3.8 Bibliography 100

II Indexing 103

4 Static Inverted Indices 104
 4.1 Index Components and Index Life Cycle 104
 4.2 The Dictionary 106
 4.3 Postings Lists 110
 4.4 Interleaving Dictionary and Postings Lists 114
 4.5 Index Construction 118
 4.5.1 In-Memory Index Construction 119
 4.5.2 Sort-Based Index Construction 125
 4.5.3 Merge-Based Index Construction 127
 4.6 Other Types of Indices 131
 4.7 Summary 132
 4.8 Further Reading 132
 4.9 Exercises 133
 4.10 Bibliography 135

5 Query Processing 137
 5.1 Query Processing for Ranked Retrieval 137
 5.1.1 Document-at-a-Time Query Processing 139
 5.1.2 Term-at-a-Time Query Processing 145
 5.1.3 Precomputing Score Contributions 151
 5.1.4 Impact Ordering 153
 5.1.5 Static Index Pruning 153
 5.2 Lightweight Structure 160
 5.2.1 Generalized Concordance Lists 160
 5.2.2 Operators 162
 5.2.3 Examples 163
 5.2.4 Implementation 165
 5.3 Further Reading 169
 5.4 Exercises 170
 5.5 Bibliography 171
6 Index Compression 174
 6.1 General-Purpose Data Compression 175
 6.2 Symbolwise Data Compression 176
 6.2.1 Modeling and Coding 177
 6.2.2 Huffman Coding 181
 6.2.3 Arithmetic Coding 186
 6.2.4 Symbolwise Text Compression 189
 6.3 Compressing Postings Lists 191
 6.3.1 Nonparametric Gap Compression 192
 6.3.2 Parametric Gap Compression 195
 6.3.3 Context-Aware Compression Methods 201
 6.3.4 Index Compression for High Query Performance 204
 6.3.5 Compression Effectiveness 209
 6.3.6 Decoding Performance 212
 6.3.7 Document Reordering 214
 6.4 Compressing the Dictionary 216
 6.5 Summary 222
 6.6 Further Reading 223
 6.7 Exercises 224
 6.8 Bibliography 225

7 Dynamic Inverted Indices 228
 7.1 Batch Updates 229
 7.2 Incremental Index Updates 231
 7.2.1 Contiguous Inverted Lists 233
 7.2.2 Noncontiguous Inverted Lists 239
 7.3 Document Deletions 243
 7.3.1 Invalidation List 243
 7.3.2 Garbage Collection 245
 7.4 Document Modifications 250
 7.5 Discussion and Further Reading 251
 7.6 Exercises 253
 7.7 Bibliography 254
III Retrieval and Ranking 257

8 **Probabilistic Retrieval 258**

8.1 Modeling Relevance 259
8.2 The Binary Independence Model 261
8.3 The Robertson/Spärck Jones Weighting Formula 264
8.4 Term Frequency 266
 8.4.1 Bookstein’s Two-Poisson Model 267
 8.4.2 Approximating the Two-Poisson Model 270
 8.4.3 Query Term Frequency 271
8.5 Document Length: BM25 271
8.6 Relevance Feedback 273
 8.6.1 Term Selection 274
 8.6.2 Pseudo-Relevance Feedback 275
8.7 Field Weights: BM25F 277
8.8 Experimental Comparison 279
8.9 Further Reading 280
8.10 Exercises 281
8.11 Bibliography 282

9 **Language Modeling and Related Methods 286**

9.1 Generating Queries from Documents 287
9.2 Language Models and Smoothing 289
9.3 Ranking with Language Models 292
9.4 Kullback-Leibler Divergence 296
9.5 Divergence from Randomness 298
 9.5.1 A Model of Randomness 299
 9.5.2 Eliteness 301
 9.5.3 Document Length Normalization 301
9.6 Passage Retrieval and Ranking 302
 9.6.1 Passage Scoring 304
 9.6.2 Implementation 304
9.7 Experimental Comparison 306
9.8 Further Reading 306
10 Categorization and Filtering 310

10.1 Detailed Examples 313
 10.1.1 Topic-Oriented Batch Filtering 313
 10.1.2 On-Line Filtering 317
 10.1.3 Learning from Historical Examples 318
 10.1.4 Language Categorization 320
 10.1.5 On-Line Adaptive Spam Filtering 325
 10.1.6 Threshold Choice for Binary Categorization 329

10.2 Classification 331
 10.2.1 Odds and Odds Ratios 333
 10.2.2 Building Classifiers 334
 10.2.3 Learning Modes 336
 10.2.4 Feature Engineering 338

10.3 Probabilistic Classifiers 339
 10.3.1 Probability Estimates 340
 10.3.2 Combining Probability Estimates 343
 10.3.3 Practical Considerations 347

10.4 Linear Classifiers 349
 10.4.1 Perceptron Algorithm 352
 10.4.2 Support Vector Machines 353

10.5 Similarity-Based Classifiers 354
 10.5.1 Rocchio’s Method 354
 10.5.2 Memory-Based Methods 355

10.6 Generalized Linear Models 355
 10.6.1 Kernel Methods 357

10.7 Information-Theoretic Models 359
 10.7.1 Comparing Models 360
 10.7.2 Sequential Compression Models 361
 10.7.3 Decision Trees and Stumps 364

10.8 Experimental Comparison 366
 10.8.1 Topic-Oriented On-Line Filtering 367
 10.8.2 On-Line Adaptive Spam Filtering 369

10.9 Further Reading 371
10.10 Exercises 372
10.11 Bibliography 373

11 Fusion and Metalearning 376

11.1 Search-Result Fusion 377
 11.1.1 Fixed-Cutoff Aggregation 379
 11.1.2 Rank and Score Aggregation 380
11.2 Stacking Adaptive Filters 381
11.3 Stacking Batch Classifiers 383
 11.3.1 Holdout Validation 383
 11.3.2 Cross-Validation 384
11.4 Bagging 385
11.5 Boosting 387
11.6 Multicategory Ranking and Classification 388
 11.6.1 Document Versus Category Scores 389
 11.6.2 Document Versus Category Rank Fusion 390
 11.6.3 Multicategory Methods 391
11.7 Learning to Rank 394
 11.7.1 What Is Learning to Rank? 395
 11.7.2 Learning-to-Rank Methods 396
 11.7.3 What to Optimize? 396
 11.7.4 Learning to Rank for Categorization 397
 11.7.5 Learning for Ranked IR 398
 11.7.6 The LETOR Data Set 399
11.8 Further Reading 400
11.9 Exercises 401
11.10 Bibliography 401

IV Evaluation 405

12 Measuring Effectiveness 406

12.1 Traditional Effectiveness Measures 407
 12.1.1 Recall and Precision 407
 12.1.2 Precision at k Documents (P@k) 408
 12.1.3 Average Precision (AP) 408
12.1.4 Reciprocal Rank (RR) 409
12.1.5 Arithmetic Mean Versus Geometric Mean 409
12.1.6 User Satisfaction 410
12.2 The Text REtrieval Conference (TREC) 410
12.3 Using Statistics in Evaluation 412
 12.3.1 Foundations and Terminology 413
 12.3.2 Confidence Intervals 416
 12.3.3 Comparative Evaluation 424
 12.3.4 Hypothesis Tests Considered Harmful 427
 12.3.5 Paired and Unpaired Differences 429
 12.3.6 Significance Tests 430
 12.3.7 Validity and Power of Statistical Tests 434
 12.3.8 Reporting the Precision of Measurement 438
 12.3.9 Meta-Analysis 439
12.4 Minimizing Adjudication Effort 441
 12.4.1 Selecting Documents for Adjudication 443
 12.4.2 Sampling the Pool 449
12.5 Nontraditional Effectiveness Measures 451
 12.5.1 Graded Relevance 451
 12.5.2 Incomplete and Biased Judgments 453
 12.5.3 Novelty and Diversity 455
12.6 Further Reading 460
12.7 Exercises 462
12.8 Bibliography 463

13 Measuring Efficiency 468
13.1 Efficiency Criteria 468
 13.1.1 Throughput and Latency 469
 13.1.2 Aggregate Statistics and User Satisfaction 472
13.2 Queueing Theory 472
 13.2.1 Kendall’s Notation 474
 13.2.2 The M/M/1 Queueing Model 475
 13.2.3 Latency Quantiles and Average Utilization 477
13.3 Query Scheduling 478
13.4 Caching 479
 13.4.1 Three-Level Caching 480
15.3.3 Properties of PageRank 528
15.3.4 Other Link Analysis Methods: HITS and SALSA 532
15.3.5 Other Static Ranking Methods 535

15.4 Dynamic Ranking 535
15.4.1 Anchor Text 536
15.4.2 Novelty 537

15.5 Evaluating Web Search 538
15.5.1 Named Page Finding 538
15.5.2 Implicit User Feedback 540

15.6 Web Crawlers 541
15.6.1 Components of a Crawler 542
15.6.2 Crawl Order 547
15.6.3 Duplicates and Near-Duplicates 549

15.7 Summary 553

15.8 Further Reading 553
15.8.1 Link Analysis 554
15.8.2 Anchor Text 555
15.8.3 Implicit Feedback 555
15.8.4 Web Crawlers 556

15.9 Exercises 556

15.10 Bibliography 558

16 XML Retrieval 564
16.1 The Essence of XML 565
16.1.1 Document Type Definitions 568
16.1.2 XML Schema 570

16.2 Paths, Trees, and FLWORs 571
16.2.1 XPath 571
16.2.2 NEXI 572
16.2.3 XQuery 574

16.3 Indexing and Query Processing 576

16.4 Ranked Retrieval 579
16.4.1 Ranking Elements 580
16.4.2 Overlapping Elements 582
16.4.3 Retrievable Elements 583

16.5 Evaluation 583