Absentmindedness, 94
Adrenal glands. See
Hypothalamic-pituitary-adrenal (HPA) stress response
Affective style, 77–78, 87–88
nature and measurement of, 78–85
scales, 82
parameters of, 79
plasticity and, 85–87
time course variables, 79–80
Aggression in rhesus monkeys,
gene-environment interaction,
serotonin and, 17–24
AIDS. See HIV
Alarm reaction, 42
Allodynamic processes, 110
Allostasis
allostatic load and, 43–45, 47, 135
general adaptation syndrome
and, 41–43
mediators of, 45–46
Allostatic overload, 43, 45
Allostatic states, 44
Amnesic patients, 99–100, 102
Amygdala, 123–126
Androstadienone, 70–74
Arched-back nursing (ABN) mothers, 7, 12
Attachment. See Social bonds
Autoimmune inflammation, 31
Autonomic nervous system,
110–113, 135
Autonomic space (model), 112
Autonomic states, 112
Beliefs (positive), impact on health, 133–137
Bernard, Claude, 29
Bias (memory), 95
Bindra, Dalbir (“D.B.”), 1
Biological response systems and social perturbations, model of link between, 32–33
Blocking (memory), 94–95
Cardiovascular system, stress and, 47–48, 112, 113
Cognition. See Emotion, cognition, and the brain; specific topics
Cognitive dissonance, 102
Colocalization, 58
Corticotropin-releasing factor (CRF), 7
Corticotropin-releasing hormone (CRH), 59
Cytosine methylation, 10
Damasio, Antonio, 122–123
Damasio, Hanna, 122–123
Defensive responses to threat. See under Maternal behavior
DNA, 9
DNA methylation, 9–11
Dopamine, 11
Emotion, cognition, and the brain, 114, 121–123, 129–130. See also Affective style
lesion studies, 122–127
neurosurgical studies, 126–128
Emotional states, positive. See Beliefs
Encoding, semantic vs. nonsemantic, 97–98
Estrogen, 11, 139–140
Exhaustion, 42, 43
Exon 1γ, 8–11
F1 intercrosses, 34–35
Facial expressions, 125–126, 128
Family environments, “risky” and stress responses, 137–138
“Fight or flight” response, 41–42
Forgetting. See Memory, seven sins of
General adaptation syndrome, Selye’s
allostasis and, 42–43, 49
Genetics
environment and, 3–5, 15
disease and, 33–35 (see also specific diseases)
importance, 4–5
Glucocorticoid receptors, hippocampal, 7–8
Glucocorticoids, stress and, 48
Gomez, Maria, 35
Grooming. See Licking and grooming
Hebb, Donald, 2
Hippocampal glucocorticoid receptors, 7–8
Hippocampus, 100
HIV, and impact of positive beliefs on health, 133–135
Homeostatic reflex mechanisms, 110–111
Hormones, stress, 47, 113. See also specific hormones
5-Hydroxyindoleacetic acid (5-HIAA), 18–22
Hypothalamic-pituitary-adrenal (HPA) stress response, 6–8, 31, 32, 42–43, 135
Index

Immunology, 30–31, 133–135
stress and, 47
Inflammatory susceptibility, 31
neuroendocrine stress response and, 31–32
Information processing, 124, 127.
See also Emotion, cognition, and the brain
Insulin, stress and, 48
Interdisciplinary teams, broadening approach to research through, 36–37
James-Lange theory of emotion, 114
Lesch, K. P., 22–23
Lesion method and lesion studies, 122–127
Licking and grooming (L&G), maternal, 6–8, 10–12
Linnoila, Markku, 16, 18
Loneliness and health, 113
Love
nature of, 54
neurobiology of, 61
sex differences in mechanisms of, 59–60
Loving and being loved, reasons for, 54–56
Luteinizing hormone (LH), 67, 69
Maternal behavior, 139. See also Family environments
and aggression in offspring, 17–18
and development of defensive responses to threat, 4–8, 11–13
individual differences in, 11–13
Maternal-pup interactions, from F1 intercrosses to, 35
McEwen, Bruce S., 2
Medial preoptic area (mPOA), 11
Medial temporal lobe, 99–100
Meditation, mindfulness, 86–87
Memory, 93–94
seven sins of, 94–96
absentmindedness, 94
bias, 95
blocking, 94–95
misattribution, 98–101
persistence, 95
suggestibility, 95
transience, 94, 96–98
Metabolism, stress and, 48
Misattribution, 98–101
Nature-nurture debate. See Genetics, environment and
Nerve growth factor-inducible factor (NGFI-A), 8, 10–11
Neuroendocrine stress response, 113
and inflammatory susceptibility, 31–32
Neuroendocrinology, 30–31
Neuroscience, social. See Social neuroscience
Nursing, 6–7, 12
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odors, social. See Pheromones; Vasanas</td>
<td>107–109, 115–118</td>
</tr>
<tr>
<td>Orthostatic stressors, 111, 112</td>
<td>Relaxation. See Meditation</td>
</tr>
<tr>
<td>Oxytocin</td>
<td>Reroduction, 54–55</td>
</tr>
<tr>
<td>estrogen and, 139–140</td>
<td>Resistance (stress response), 42</td>
</tr>
<tr>
<td>as hormone of love, 53, 57–59</td>
<td>Riley, Anthony, 35</td>
</tr>
<tr>
<td>Parasympathetic nervous system,</td>
<td>Self-reference effect, 97–98</td>
</tr>
<tr>
<td>110–113</td>
<td>Selye, Hans, 41–44, 49</td>
</tr>
<tr>
<td>Parental care, 54–55. See also Maternal</td>
<td>Semantic encoding, 97–98</td>
</tr>
<tr>
<td>behavior</td>
<td>Serotonin (5-HT), 7, 18–19</td>
</tr>
<tr>
<td>Persistence of memories, 95</td>
<td>Serotonin transporter gene (5-HTT), 23–24</td>
</tr>
<tr>
<td>Phenotype, 3</td>
<td>Social bonds, 58–59</td>
</tr>
<tr>
<td>Pheromones. See also Vasanas ovarian</td>
<td>how they protect, 55–57</td>
</tr>
<tr>
<td>primer, 65</td>
<td>Social chemosignals, 65. See also Pheromones; Vasanas</td>
</tr>
<tr>
<td>causes, 66–68</td>
<td>Social dominance relationships, 17</td>
</tr>
<tr>
<td>function, 67–68</td>
<td>Social interactions and moods. See Vasanas</td>
</tr>
<tr>
<td>levels of organization, 66</td>
<td>Social isolation and health, 113</td>
</tr>
<tr>
<td>perspectives, 69</td>
<td>Social neuroscience and multilevel analyses, 109, 115–118</td>
</tr>
<tr>
<td>time spans, 68–69</td>
<td>bottom-up influences, 113–115</td>
</tr>
<tr>
<td>Pituitary gland. See</td>
<td>micro and macro perspectives, 116</td>
</tr>
<tr>
<td>Hypothalamic-pituitary-adrenal (HPA) stress</td>
<td>top-down influences of social factors, 110–113</td>
</tr>
<tr>
<td>response</td>
<td>Social perception, 121–122. See also Emotion, cognition, and the brain</td>
</tr>
<tr>
<td>Positive and Negative Affect Scales (PANAS), 82</td>
<td>Social perturbations and biological response systems, model of link between, 32–33</td>
</tr>
<tr>
<td>Prefrontal asymmetry, 80–85</td>
<td></td>
</tr>
<tr>
<td>Preoptic area, medial, 11</td>
<td></td>
</tr>
<tr>
<td>Psychobiology and social problems, 108</td>
<td></td>
</tr>
<tr>
<td>Psychoneuroimmunology, 133–135. See also Immunology</td>
<td></td>
</tr>
<tr>
<td>Recognition</td>
<td></td>
</tr>
<tr>
<td>emotion, 124–128</td>
<td></td>
</tr>
<tr>
<td>false, 98–100</td>
<td></td>
</tr>
<tr>
<td>Reductionism, viii, 108</td>
<td></td>
</tr>
</tbody>
</table>
Index

Social stressors. See Stressors
Social support, 137
Somatosensory cortices, 127–128
Stewart, Jane, 1
Stress mediation, central role of brain in, 46
Stress mediators, 41. See also Allostasis
Stress responses, 41–42, 112, 139–140. See also Meditation
 neuroendocrine, 31–32, 113
 positive resources and, 136–137, 140
 protection and damage, 47–49
 and tending to others, 137–138
Stressors, social-cognitive and orthostatic, 111, 112
Substance abuse, 59
Substitutionism, 108
Suggestibility (memory), 95
Sympathetic nervous system (SNS), 110–113, 135

Temporal lobe, medial, 99–100
“Tend and befriend” response, 42
Tend-and-befriend model, 139–140
Transience (memory), 94, 96–98

Vasanas, 69–70
 causes, 71–72
 levels of organization, 70–71
 perspectives, 73–74
 time spans, 72–73
Vasopressin, 60
Violence. See Aggression