EYE, RETINA, AND VISUAL SYSTEM OF THE MOUSE

Edited by Leo M. Chalupa and Robert W. Williams

THE MIT PRESS
CAMBRIDGE, MASSACHUSETTS
LONDON, ENGLAND
INDEX

Note: Page numbers followed by f indicate figures; page numbers followed by t indicate tables.

A

A and A/J strain auditory evoked brainstem response in, 22 conditioned taste aversion in, 29 hearing and visual abilities in, 15t, 16 mutation and effect in, 62t pattern discrimination in, 18 taste ability in, 24 visual acuity of, 20

ABCA4 mutations, 723

Acrea/Acre null mutant mice, Stargardt macular degeneration in, 540–542, 541f

Ablation, targeted, to assess role of photoreceptors, 595–596

ab-LIM, directed growth of retinal ganglion cell axons toward optic disc and, 384

AC Master, 78, 78f

Abca4/Abcr see also specific alleles defining disease progression, clinical outcome, or important domains, 650 defining response to treatment, 651 defining responses to environmental influences, 650–651 phenotypic variation due to, 649–651

Achromatopsia gene replacement therapy for structural defects in retinal disease, for functional defects in retina, 611–613

Adeno-associated virus (AAV) gene therapy, 605–607, 606t, 608t–609t

Adenosine A1 receptor, 362–363, 363f, 364a–364f

Adenosine A2a receptor, 364

Adenosine A3 receptor, 363–364

Adenosine A2b receptor, 364

Advanced glycation end products (AGEs), 50–51

Adrenergic neurons, modulation of, 196

Adriamycin, 591–593

Adrenergic neurotransmitters, 195

Adduction, horizontal, 120–121

Adduction movements, 119

Adhesion molecules, 529–530

Adipose tissue, 513

Aegle marmelos for retinal disease, 541f

Afferent inputs, 27–28

Agarose, 202

Agata, 14

Agave tequilana for retinal disease, 541f

Aggression, conditioned in, 29

Agitation, behavior of, 126

Agoraphobia, 29

Age-related macular degeneration (AMD), 540–542, 541f

Age-related macular degeneration (AMD) see also specific alleles defining disease progression, clinical outcome, or important domains, 650 defining response to treatment, 651 defining responses to environmental influences, 650–651 phenotypic variation due to, 649–651

Age-related retinal degeneration (ARRD), in

Age-related macular degeneration (AMD)

African pygmy mice, 3, 5, 8

Age-related eye diseases, 501–508 cataracts as, in human and mouse eyes, 508 in mice, search for, 501–508, 583t–584t mouse models for, 581

Age-related macular degeneration (AMD) gene therapy for, 607 in human and mouse eyes, 582, 584–588 Age-related retinal degeneration (ARRD), in human and mouse eyes, 582, 584–588, 585f–587f, 583t

Akita mice, diabetes in, 549 retinal neurodegeneration induced by, 551

AKR/J strain auditory evoked brainstem response in, 22 hearing and visual abilities in, 15t, 16 pattern discrimination in, 18 taste ability in, 23 visual acuity of, 20 Albino, retinal ganglion cell projections and, 397 Albino mice, 61 pattern discrimination in, 18 visual acuity of, 20 Aldose reductase, diabetic retinopathy and, 532 Alleles, see also specific alleles defining disease progression, clinical outcome, or important domains, 650 defining response to treatment, 651 defining responses to environmental influences, 650–651 phenotypic variation due to, 649–651

Achromatopsia gene replacement therapy for structural defects in retinal disease, for functional defects in retina, 611–613

Adeno-associated virus (AAV) gene therapy, 605–607, 606t, 608t–609t

Adenosine A1 receptor, 362–363, 363f, 364a–364f

Adenosine A2a receptor, 364

Adenosine A3 receptor, 363–364

Adenosine A2b receptor, 364

Advanced glycation end products (AGEs), 50–51

Adrenergic neurons, modulation of, 196

Adriamycin, 591–593

Agarose, 202

Agata, 14

Agave tequilana for retinal disease, 541f

Aggression, conditioned in, 29

Agitation, behavior of, 126

Agoraphobia, 29

Age-related macular degeneration (AMD), 540–542, 541f

Age-related macular degeneration (AMD) see also specific alleles defining disease progression, clinical outcome, or important domains, 650 defining response to treatment, 651 defining responses to environmental influences, 650–651 phenotypic variation due to, 649–651

Age-related retinal degeneration (ARRD), in human and mouse eyes, 582, 584–588 Age-related retinal degeneration (ARRD), in human and mouse eyes, 582, 584–588, 585f–587f, 583t

Akita mice, diabetes in, 549 retinal neurodegeneration induced by, 551

AKR/J strain auditory evoked brainstem response in, 22 hearing and visual abilities in, 15t, 16 pattern discrimination in, 18 taste ability in, 23 visual acuity of, 20 Albino, retinal ganglion cell projections and, 397 Albino mice, 61 pattern discrimination in, 18 visual acuity of, 20 Aldose reductase, diabetic retinopathy and, 532 Alleles, see also specific alleles defining disease progression, clinical outcome, or important domains, 650 defining response to treatment, 651 defining responses to environmental influences, 650–651 phenotypic variation due to, 649–651

Achromatopsia gene replacement therapy for structural defects in retinal disease, for functional defects in retina, 611–613

Adeno-associated virus (AAV) gene therapy, 605–607, 606t, 608t–609t

Adenosine A1 receptor, 362–363, 363f, 364a–364f

Adenosine A2a receptor, 364

Adenosine A3 receptor, 363–364

Adenosine A2b receptor, 364

Advanced glycation end products (AGEs), 50–51

Adrenergic neurons, modulation of, 196

Adriamycin, 591–593

Agarose, 202

Agata, 14

Agave tequilana for retinal disease, 541f

Aggression, conditioned in, 29

Agitation, behavior of, 126

Agoraphobia, 29

Age-related macular degeneration (AMD), 540–542, 541f

Age-related macular degeneration (AMD) see also specific alleles defining disease progression, clinical outcome, or important domains, 650 defining response to treatment, 651 defining responses to environmental influences, 650–651 phenotypic variation due to, 649–651

Age-related retinal degeneration (ARRD), in human and mouse eyes, 582, 584–588 Age-related retinal degeneration (ARRD), in human and mouse eyes, 582, 584–588, 585f–587f, 583t

Akita mice, diabetes in, 549 retinal neurodegeneration induced by, 551

AKR/J strain auditory evoked brainstem response in, 22 hearing and visual abilities in, 15t, 16 pattern discrimination in, 18
BALB strains, 62t

BALB/c
anxiety-related behavior tasks and, 29
auditory evoked brainstem response in,
22
conditioned odor preference in, 28
learning and memory in, 27
pain sensitivity in, 25
photoreceptor response damage by light and, 575, 577

BALB/cByJ
hearing and visual abilities in, 15t, 16
pattern discrimination in, 18
visual acuity of, 20

Behavioral tasks, for sensory function
Behavioral studies of mouse vision, 107–116
Behavior, environmental enrichment and,
Bone morphogenic protein (BMP) receptor
Brain-derived neurotrophic factor (BDNF)
Brain Gene Expression Map (BGEM),
Brain
Bone morphogenic protein (BMP) receptor
Brain-derived neurotrophic factor (BDNF)
Brain-derived neurotrophic factor (BDNF)
Bcl-2
Batten disease, 612
bHLH transcription factors, retinal
Bfsp1
Behavioral tasks for sensory function
Behavioral studies of mouse vision, 107–116
Behavior, environmental enrichment and,
Beaded filaments, 499
Behavior, environmental enrichment and,
Behavioral studies of mouse vision, 107–116
applied measurement of, 115–116, 116f
idiomsyncreases associated with whole animal behavior and, 108–109
measures of, 109–115
of automated visual responses, 111–115, 114f, 115f
of visual perception in reinforcement-based tasks, 109–111, 111f–113f
rationale for, 107–108
Behavioral tasks, for sensory function
measurement, 15t, 15–16
future directions for use of, 30
of hearing, 20, 22
learning and measurement tasks and, 25–29
of olfaction, 22–23
of pain sensitivity, 24–25
tactile and vibrissae sensitivity, 24
taste, 23–24
of vision, 16–20
BEN, directed growth of retinal ganglion cell axons toward optic disc and, 382–383
Bgf1, cataracts and, 499
Bgf2, cataracts and, 499
bHLH transcription factors, retinal development and, 303
BH3-only protein, cell death and, 338
Binocularity, in primary visual cortex,
49–51, 50f
transcallosal cells and, 50–51
Bipolar cells
Clomeleon in, 597
depolarizing, 136

Bnf4, lens development and, 276
Bone morphogenic protein (BMP) receptor
Bcl-2
Batten disease, 612
bHLH transcription factors, retinal
Bfsp2
Behavioral studies of mouse vision, 107–116
Behavior, environmental enrichment and,
Beaded filaments, 499
Behavior, environmental enrichment and,
Behavioral studies of mouse vision, 107–116
applied measurement of, 115–116, 116f
idiomsyncreases associated with whole animal behavior and, 108–109
measures of, 109–115
of automated visual responses, 111–115, 114f, 115f
of visual perception in reinforcement-based tasks, 109–111, 111f–113f
rationale for, 107–108
Behavioral tasks, for sensory function
measurement, 15t, 15–16
future directions for use of, 30
of hearing, 20, 22
learning and measurement tasks and, 25–29
of olfaction, 22–23
of pain sensitivity, 24–25
tactile and vibrissae sensitivity, 24
taste, 23–24
of vision, 16–20
BEN, directed growth of retinal ganglion cell axons toward optic disc and, 382–383
Bgf1, cataracts and, 499
Bgf2, cataracts and, 499
bHLH transcription factors, retinal development and, 303
BH3-only protein, cell death and, 338
Binocularity, in primary visual cortex,
49–51, 50f
transcallosal cells and, 50–51
Bipolar cells
Clomeleon in, 597
depolarizing, 136

Bnf4, lens development and, 276
Bone morphogenic protein (BMP) receptor
Bcl-2
Batten disease, 612
bHLH transcription factors, retinal
Bfsp2
Behavioral studies of mouse vision, 107–116
Behavior, environmental enrichment and,
Beaded filaments, 499
Behavior, environmental enrichment and,
Behavioral studies of mouse vision, 107–116
applied measurement of, 115–116, 116f
idiomsyncreases associated with whole animal behavior and, 108–109
measures of, 109–115
of automated visual responses, 111–115, 114f, 115f
of visual perception in reinforcement-based tasks, 109–111, 111f–113f
rationale for, 107–108
Behavioral tasks, for sensory function
measurement, 15t, 15–16
future directions for use of, 30
of hearing, 20, 22
learning and measurement tasks and, 25–29
of olfaction, 22–23
of pain sensitivity, 24–25
tactile and vibrissae sensitivity, 24
taste, 23–24
of vision, 16–20
BEN, directed growth of retinal ganglion cell axons toward optic disc and, 382–383
Bgf1, cataracts and, 499
Bgf2, cataracts and, 499
bHLH transcription factors, retinal development and, 303
BH3-only protein, cell death and, 338
Binocularity, in primary visual cortex,
49–51, 50f
transcallosal cells and, 50–51
Bipolar cells
Clomeleon in, 597
depolarizing, 136

synaptic transmission in outer retina and, 176f, 176–179, 177t
gap junctions of, 167
hyperpolarizing, 136
synaptic transmission in outer retina and, 176f, 176–179, 177t
ON and OFF pathway segregation and, 353–354, 357
in Rb-deficient retinas, 315
role of gap junctions in, transgenic mice to study, 596–597
synaptic output of, control by GABA R-mediated inhibition, 182–183
Birdshot retinocochiroidopathy, 516
Blind-sterile mutant, 501
Bone morphogenic protein (BMP) receptor
Bone morphogenic protein (BMP) receptor
1b, targeting of retinal ganglion cell axons to optic disc and exit from eye and, 385
Brain
electroporation and, 626
environmental enrichment and, 450
retinoic acid actions in, 364–365
Brain Gene Expression Map (BGEM),
Brain
Brain-derived neurotrophic factor (BDNF)
acceleration of visual system development and, environmental enrichment compared with, 453, 454
cell death and, 336
environmental enrichment and, increase due to, 457–458
retinal ganglion cell axon growth and, 401
brief-access taste test, 24
Brightness detection, measurement of, 16, 17f, 18
Brn-3b, chiasm patterning and, 396–397
Brn-3b/- mice, retinal ganglion cell axon growth ability and, 407–408
Brn-3b/- Brn-3c/- mice, retinal ganglion cell axon growth ability and, 407–408
Brn-3c, chiasm patterning and, 397
Brn-3,2, directed growth of retinal ganglion cell axons toward optic disc and, 383–384
Bruch's membrane, plate 64
BUB strain, mutation and effect in, 62t
BUB/Bnf
auditory evoked brainstem response in, 22
taste ability in, 23
Buried food test, 22
Bxds, cone-driven, 137, 137f
BXD Genetic Reference Panel of Mice,
BXSB strain, pattern discrimination in, 18
C
C strain, 13
Castration, 100–101
CaCna1f nob2 mice, retinal ganglion cell responses in, 179–181, 180f
Cadherin4, retinal vascularization and, 287
Calcium
retinal ganglion cell axon growth ability and, 408
synaptic transmission in outer retina and, 177–178
Calcium currents, in dorsolateral geniculate nucleus, 220
Calcium imaging
direction-selective retinal ganglion cell responses, 598
for retinal wave measurement, 343
with two-photon microscopy, for ocular dominance plasticity assessment, 441–442, 442f
Calmodulin kinases (CaMKs), retinal ganglion cell axon growth ability and, 408
cAMP, retinal ganglion cell axon growth ability and, 408
cAMP response element–binding protein (CREB), retinoic acid and, 366
Candida albicans infections, 508
Capecchi, Mario R., 35
Carbohydrates, protein-bound, cataracts and, 499–500
Carrageenan, subcutaneous injections of, 25
Caspases, cell death and, 338
CAST/Ei strain, taste ability in, 23
CAST/EiJ hearing and visual abilities in, 15t
pattern discrimination in, 18
Cat5, 501
Cat5, 501
Cataracts
age-related, in human and mouse eyes, 508
gene expression leading to formation of, 273
genetics of, 493–501
mouse models for metabolic cataracts and, 499–500
mouse models for senile cataracts and, 500
mutations affecting lens membranes and, 495–496
mutations affecting structural proteins of lens and, 496–499
mutations at early stages of lens development and, 493–494, 494f
pattern electroretinography and, 124
β-Catenin, inhibition of lens induction by, 277–278
Caviness, Vernon, 245
CBA strains, 13
avoidance learning in, 28
CBA/Ca, anxiety-related behavior tasks and, 29
CBA/CaJ, auditory evoked brainstem response in, 22
CBA/J, cued and contextual fear conditioning in, 27
learning and memory in, 26, 27
tactile sensitivity in, 24
taste ability in, 23
Cloning of genetic modifiers (continued) segregating crosses with multiple strains and, 634
\textit{c-Maf}, lens fiber differentiation and, 278
Coats’ disease, 328
Cochlear vasculature, abnormalities of, in \textit{Nphs1} knockout mice, 533–534
Cognitive functions, higher order, vision in tasks evaluating, 25
Collagen I, primary open-angle glaucoma and, 482
Color blindness, gene replacement therapy for, 612–613
Commensal mice, 5
Compensatory eye movements, 87, 88
adaptive properties of, 96–99, 97t, 98f, 99f, 100
Complete Freund’s adjuvant (CFA), experimental autoimmune uveitis induced by, 515, 520
Conditioned odor preference, 28
Conditioned taste aversion, 28–29
Cone(s), 135–144.
Conditioned odor preference, 28
Cone visual cycle, 727, 728f, plate 69
Cone synapses, 136
Cone pedicles, 136
Cone(s), 135–144. See also Photoreceptors
anatomy of, 135–137
numerosity and retinal disposition and, 135–136, 136f, plate 2
retinal connectivity of cones and, 136
S- and M-opsins and, 136–137
ultrastructure and, 136
damaging of, by rod dysfunction, 566
dim-flash responses of, plate 3
electroretinographic studies of, 137–139
a-wave and, 138
b-wave and, 137, 137f
function coexpression of S- and M-opsins and, 138–139
phenotypes of mice with cone phototransduction genes inactivated and, 138, 138f
rapid recovery from bleaching stimuli and, 138
functions of, 135
gap junctions of, 163–166, 166f
of mouse compared to other mammalian species, 36
\textit{Na}^{+/−}, 139, 141–144
caveats for investigations of, 142
electrophysiological recordings and, 141–142, 143f
histochemical and ultrastructural evidence and, 141, 142t
prospects for studies using, 143–144
role in scotopic visual pathway, targeted ablation to assess, 595–596
scaling of, 263
single-cell recordings and, 139, 140f–142f
spatial vision and, 81–82
Cone pedicles, 136
Cone synapses, 136
Cone visual cycle, 727, 728f, plate 69
Congenital stationary night blindness (CSNB), 650
Connective tissue, in optic nerve, 202, 203f
Connexins
in lens, cataracts and, 495–496, 496f
as retinal ganglion cell markers, 193
retinal gap junctions and, 165
of amacrine cells, 167
of bipolar cells, 167
of ganglion cells, 169, 171
of horizontal cells, 167
of photoreceptors, 163–166
in proximal rod pathways, 167–169, 168f
retinal waves and, 347
Cornea
development of, 697, 698f
transcription factors involved in, 699f
699f–703, plate 66
gene expression in. See Gene expression, in cornea and lens
neovascularization of, matrix metalloproteinase-9 and, 506
refractive power of, 73
Corpus callosum, visual cortex connections with, 46–47, 47f
Coulombre, Alfred and Jane, 269
Cre expression, in Le-Cre, MLR10, and MLR39 strains, plate 12
Cre recombinases
cell type–specific regulation using, 626–627, 629, 630f
conditional gene alterations using, 629, 631f
temporal and cell–type specific regulation using, 629, 631f
temporal regulation using, 626, 627f, plate 57
Cre-lox recombinase system
for drug-controlled gene expression, 600f
for site-specific recombination, 599–600
Cre-lox-P system, 274
Critical periods, experience-dependent
prospects for studies using, 57
retinal waves and, 347
Transcription factors involved in, 699f, 700–703, 704–705, 716–719
Retinal Morphology
A-crystallin structure and, plate 67
posttranslational modification of, 715, 716
lens development and, 272
\textit{α}-Crystallins
\textit{αA}-crystallin structure and, plate 67
cataracts and, 496, 496f
expression in lens, 703–704, 712f, 712–713
\textit{β}-Crystallins
cataracts and, 497
tissue samples and, 704, 713
\textit{τ}-Crystallins
cataracts and, 497–498, 498f
expression in lens, 704, 713
Cued and contextual fear conditioning, 27
Cued platform task, for measuring visual perception, 110
Curare, retinal wave blocking by, 345
Current-clamp recordings, for retinal wave measurement, 343
Cx36 expression, for photoreceptors, plate 5
Cycloxygenase-2 (COX-2) inhibitors, herpes simplex virus infection and, 506
\textit{GPR111}
primary congenital glaucoma and, 483
primary open-angle glaucoma and, 482
Cytomegalovirus infections, murine, 509
Cytoskeletal proteins, cataracts and, 498–499
Experimental autoimmune uveitis (continued)
in mice expressing a transgenic target antigen in the retina, 515–516
pathogenesis of, critical checkpoints in, plate 39
spontaneous, 516–517
Expressed sequence tags (ESTs), 662–663
cy1 mutation, 269
cy2 modifier genes, 269
Eye, of mouse compared to other mammalian species, 35
Eye field transcription factors (EFTFs), 299–302
expression in retinal progenitor cells, 299, 302–303
interaction of, 300
regulation of, 300–301
transcription targets of, 301–302
Eye movements, 87–102
after-nystagmus and velocity storage integrator and, 94–96, 96f
angular vestibulo-ocular reflex and, 88–91, 89f, 90f
compensatory, 87, 88
adaptive properties of, 96–99, 97f, 98f, 99f
control of, importance of, 87
in foveate and afoveate mammals, 87
gaze holding and velocity-to-position neural integrator and, 96
gaze-shifting, 87–88
nystagmus and, fast phases of, 99–100, 100f
off-vertical axis stimulation and, 93–94, 94f
optokinetic reflex and, 91, 91f
otolith-ocular reflexes and, 91–93, 92f
rapid, saccade-like, 233
electrically induced, in mice, 235–238, 237f
measurement of, 233–234, 234f
spontaneous, in mice, 234f, 234–235, 236f
reasons for studying, 87
recordings of, applications of, 100–101
visual-vestibulo-ocular reflex and, 89f, 89–91, 90f
Eyeless. See Pax6
Eyeless. See Pax6
F
Fear conditioning, cued and contextual, 27
Fetal loss, in Ndph knockout mice, 534–535
Fgfr signaling, lens development and, 276–277
Field mice, 5
Filensin, cataracts and, 498–499
Fixation mechanism, 88
Fluorescence resonance energy transfer (FRET), 597
Fluorescent reporters
under control of Thy-1 promoter, 598
subcellular spatial resolution using, 597
Fontana’s spaces, 130
Force-choice apparatus, two-alternative, for visual acuity measurement, 18, 20
Force choice discrimination task, for measuring visual perception, 109
Formalin test, 25
Forward genetics approach, 66–67, 67f
Fox, cataracts and, 494
Fox1, chiasm patterning and, 396
FOXE3, in cornea and lens development, 701
Fox3, lens development and, 277
Foxg1, chiasm patterning and, 396
Foxn1, Math5 repression in retinal progenitor cells and, 326
Fro2α, lens development and, 277
Fungal infections, mouse models of, 508
FVB/N strain, 15
FVB/NJ
anxiety-related behavior tasks and, 29
auditory evoked brainstem response in, 22
aversion learning in, 28
hearing and visual abilities in, 15t
pain sensitivity in, 25
pattern discrimination in, 18
visual acuity of, 20
mutation and effect in, 62t
FVBS/Ant strain, 15
G
GABA4C null mice, refractive errors in, 83
GABAAR, inhibition mediated by alteration of visually and electrically evoked responses of ON-center retinal ganglion cells by, 183–184, 184f
control of output of bipolar cell synaptic output by, 182–183
GABAergic neurons, of superior colliculus, 239
GAD67 (Gad)-GFP knock-in mice, 635, 636f
Galactose feeding, diabetes and, 550
α(1,3)-Galactosyltransferase, cataracts and, 499
Ganglion cell(s), gap junctions of, 169, 170f, 171
functional role of, 171
Ganglion cell layer (GCL), 635, 636f
GAP-43, retinal ganglion cell axon guidance through visual pathway and, 392f, 393
Gap junctions, 163–171
of amacrine cells, 167
of bipolar cells, 167
transgenic mice to study, 596–597
ganglion cell coupling and, 169, 170f, 171
functional role of, 171
of horizontal cells, 166f, 166–167
of photoreceptors, 163–166, 166f
in proximal rod pathways, 167–169, 168f
retinal waves and, 346–347
Gaze holding, oculomotor neural integrator and, 96
Gaze-shifting movements, 87, 88
GC1–I/~ mice, as model for Leber congenital amaurosis, 611
Gdf8/Myostatin, control of retinal progenitor cell proliferation by, 328
Geminin, eye field transcription factor regulation and, 302
Gene(s). See also specific genes controlling vision, finding, 62–63, 64f, 65f
epistatic interaction between, 651–653, 652t
Gene deletion, to define role of cholinergic signaling by starburst amacrine cells, 598
Gene expression, 685–694, 686f
analysis of correlation of retinal pigment epithelium gene expression and retinal vascularization and, 692–693
isolation of retinal pigment epithelium and, 698, 699f, 690f, 690–691
isolation of retinal vasculature and subsequent gene expression studies and, 688, 689f, 691–692
study methods for, 686–687
transgenics in, 692
in cornea and lens, 697–706
in cornea and lens development and, 697, 698f
large scale analyses of, 698–699
regulation of specific genes and, 703–705
transcription factors and, 699f, 699–703, plate 66
degeneration networks by expression profiling of photoreceptors from rd mice and, 679–680
drug-controlled Cre-lox recombinase system for study of, 600f, 600–601
reversible, 601
expression profile of mRNA from whole mouse retinas at different postnatal developmental stages and, plate 65
inducible, in differentiated Muller glia, plate 61
mapping of, for ocular dominance plasticity assessment, 442–443
in mouse eye, 662
in retinal pigment epithelium correlation of retinal pigment epithelium gene expression and retinal vascularization and, 692–693
isolation of retinal pigment epithelium and, 688, 689f, 690f, 690–691
in retinal vasculature correlation of retinal pigment epithelium gene expression and retinal vascularization and, 692–693
isolation of retinal pigment epithelium and, 688, 689f, 691–692
spatial regulation of, using cell type–specific promoters, plate 58
Gene expression profiling, 654–655
Gene therapy
- antiangiogenic, 607
- neurotrophic factor, 613
- for retinal degeneration, 675
- vectors for, 605
- adenoassociated virus. See Adenoassociated virus (AAV) gene therapy

Gene transfer methods, 593–594, 594f. See also Electroporation

Gene targeting methods, 594–595, 595f

Genetic modifiers
- as cause of phenotypic variation, 651–653, 652t
- retinal degeneration and, 652–653
- cloning of, strategies for, 653–655
- gene expression profiling and, 654–655
- haplotype analysis and, 654
- microarray analysis and, 654–655
- modifier screens using mutagenesis and, 655
- segregating crosses with multiple strains and, 654

Genetic networks in mouse eye, 667f, 667–668
- microarray methods and, 669

Genetic tagging technique, to ablate
- for retinal degeneration, 675
- neurotrophic factor, 613
- antiangiogenic, 607
- as cause of phenotypic variation, 651–653, 652t
- cloning of, strategies for, 653–655
- gene expression profiling and, 654–655
- haplotype analysis and, 654
- microarray analysis and, 654–655
- modifier screens using mutagenesis and, 655
- segregating crosses with multiple strains and, 654

Glaucoma
- future prospects for new therapies for, 487–488
- genomics and proteomics and, 488
- human clinical research on, pattern genetic component in, 479
- mouse models of, 479–489
- accuracy of intraocular pressure measurements in, 480
- advantages of, 479
- of developmental glaucoma, 483
- experimentally induced glaucoma and, 481
- pattern electroretinogram application in, 122–124, 128f
- of pigmented glaucoma, 483–485, 484f
- of primary congenital glaucoma, 483
- of primary open-angle glaucoma, 481–482
- similarity between mouse and human structures relevant to, 479–480
- mutagenesis and new models of, 488–489
- neurodegeneration and, 485, 485f
- optic nerve excavation in, prevention by radiation treatment, plate 35
- overview of, 479
- primary open-angle models of, 489
- mouse model of, 481–482
- retinal ganglion cell death in regional patterns of, 485–486, plate 33
- soma death and axon degeneration and, 486–487, 487f
- treatment of, 644
- future prospects for new therapies for, 487–488
- Glaucomatous optic neuropathy, retinal ganglion cell axon regeneration in, 409
- Gli family, control of retinal progenitor cell proliferation by, 329
- Glial cells(s), in optic nerve, 201–202
- Glial cell line-derived neurotrophic factor (GDNF), 613
- retinal ganglion cell axon growth and, 401
- Glial fibrillary acidic protein-green fluorescent protein (GFAP-GFP), 287
- Glucagon amacrine cells, in mouse versus chicken eye, 82–83
- GluR6, signaling through, 596
- Glycine receptor ε2, photoreceptor development and, 305
- Gnao1tm1Lbi mice, control of depolarizing bipolar mGluR6 signaling cascade in, 178–179, 179f
- Gqαβεε mice
- control of depolarizing bipolar GluR6 signaling cascade in, 178–179, 179f
- Gnrh2 mice
- control of depolarizing bipolar GluR6 signaling cascade in, 178–179, 179f
- retinal ganglion cell responses in, 181
- Growth, of retinal ganglion cell axons. See Retinal ganglion cells (RGCs), axon growth and regeneration of
- Growth factors. See also specific growth factors
- lens and, 273
- retinal vasularization and, 286–287
- Growth of mouse eye, 74
- Guidance molecules, retinal vasularization and, 288

H
- Habituation-discrimination test, 22–23
- Habituation-dishabitation test, 22–23
- Hamilton Eye Institute Mouse Database (HEIMED), 664
- BXD Genetic Reference Panel of Mice and, 664–665, 666f, 667f
- genetic networks in eye and, 667, 667f
- quantitative trait locus mapping in, 668–669, 670
- Hargreaves test, 24, 25
- Hartmann-Shack aberrometer
- optical aberration measurement using, 79f, 79–80
- spherical aberration found on, 75–76
- Head tilt mice, 101
- Hearing, in mice, 15f
- Hearing ability, measurement of, 20, 22
- Hearing loss, in Nphp knockout mice, 533–534
- Heat shock transcription factors
cataracts and, 496–497
- in cornea and lens development, 702
- Hematopoietic stem cells (HSCs), retinal vasularization and, 289
- Herpes simplex virus (HSV) infections, 505
- Herpes stromal keratitis (HSK), 505–506
- Hes1
- eye field formation and, 301
- retinal development and, 324
- Hes5, eye field formation and, 301
- Hind limb denervation, as model of anesthesia dolorosa, 25
- Hmg1, in cornea and lens development, 701
- Horizontal cells
development of, Rb and, 318
- gap junctions of, 166f, 166–167
- mosaic architecture of, 148–150, 149f, 150f
- Hot-plate test, 24–25
- House mice, 5
- Hsp4, cataracts and, 496–497
- Hsp92, cataracts and, 499–500
- Human genome, 660
- Human leukocyte antigen (HLA) transgenic mice, experimental autoimmune uveitis in, 516
- Hyperoxia, depletion-induced, lack of oxygen supply to outer retina and, 565–566
- Hyperpolarizing bipolar cells (HBCs), 136
- synaptic transmission in outer retina and, 176f, 176–179, 177f
- Hypopigmented mice, 61

I
- Iαβ-ζ, in cornea and lens development, 702
- I/LnJ mice, auditory evoked brainstem response in, 22
- Immunoprecipitation (IP), visual cycle protein interactions and, 729
- Impact-rebound (I/R) tonometry, 480
- Inbred strains
- genetic variability in, 668
- power of, 668
- used for research, 13
- on lens, 271–272
- Inducible nitric acid synthase (iNOS), diabetic retinopathy and, 553
- Inducible RNAi, in retina, plate 62
- Infantile neuronal ceroid lipofuscinosis (INCL), gene replacement therapy for, 612
- Infectious eye diseases, 505–509
- bacterial, 506–508
- fungal, 508
- herpetic, 505–506
- parasitic, 508–509
- retinal, mouse models of, 509

INDEX 743
Interleukin-8 (IL-8)
Isomerohydrolase, in visual cycle, 723–724
Isoelectric focusing (IEF), in proteomics,
Islet2
Ischemic optic neuropathy, retinal ganglion
Intraocular pressure (IOP)
Intracellular adhesion molecule-1 (ICAM-1),
Interphotoreceptor retinoid-binding protein
Interleukin-1
Interlaminar connections, in superior
Intergeniculate leafl et (IGL), retinal
Interferon-
Interferometer, Michelson, 79
Interferon-τ (IFN-τ)
Experimental autoimmune uveitis and,
Keratomycosis, 508
Keratins, expression in cornea, 705
Keratitis, stromal, herpes, 505–506
Keratocan, expression in cornea, 705
Keratomyositis, 508
Kessler, Paul Leonhard, 270
Kinesins, cell death and, 338
KKAY mouse
diabetes in, 550
diabetes-induced retinal
neurodegeneration in, 551
Knockout mouse models, 63, 653–645. See also specific models
anterior chamber cell types and, 644–645
developers of, 35
for lens research, 273–274
P7, plate 42
repressive errors in, 83
retinal cell types and, 635, 636f, 637
retinal pigment epithelium and, 637–639,
639f
vascular cell types and, 639–643, 641f,
643f
L
Lac repressor-lac operator system, for study of retinal ganglion cells, 599
Lamina cribrosa region, of optic nerve, 201, 202f
Lang, Richard, 275
Lamina cribrosa (LC), in glaucoma, 485–486
Lamina cribriformis, of optic nerve, 201, 202f
Laug, Richard, 275
Lateral geniculate nucleus (LGN) cellular composition of, 419
differentiation of neurons of, 419
dorsal. See Dorsolateral geniculate nucleus (dLGN)
excitatory responses in, 420, 422, 424
cyto-specific segregation in, development of, 415–416, 416f, 417f, 418
inhibitory responses in, 422
retinal ganglion cell projections to, 192
synaptic connectivity patterns in, 422,
423f, 424
synaptic remodeling in, 429–430, 430f,
430–431, 431f
activity and, 431–432
comparison with remodeling in other regions of visual system, 433–434
cortical critical period in, 443
genes involved in, 434–435
plasticity in lateral geniculate nucleus and, 432–433
superior colliculus and, 433–434
vision-sensitive phase of, 433
Lateral terminal nuclei (LTN), retinal
projections to, 41
Lateromedial area, extrastriate, intracortical
connections of, plate 9, plate 10
Lathrop, Abbie, 13
Learning tasks, 25–29
visually dependent, 25–28
visually independent, 28–29
Leber congenital amaurosis (LCA), gene
replacement therapy for, 611–612
Lecithin:retinol acyltransferase (LRAT), in
membranes of, 660–661
Leukemia inhibitory factor (LIF), retinal
vascularization and, 287
Leukocytes adherence in retinal microvasculature of
diabetic mouse, plate 47
mouse model of oxygen-induced retinopathy and, 293–294
Lhx2, as eye field transcription factor, 300
Lid suture, deprivation myopia from, 82
Ligeois, Nanette, 274
Light acceleration of photoreceptor
degeneration by, lack of oxygen supply to outer retina and, 566
continuous, refractive development and, 82
raising of oxygen levels in outer retina by, 565
responses to exposure to, Rpe65 alleles and, 650–651
retinal degeneration induced by, 16, 573
mouse strains with, 16
Light-dark transition test, 29
Lm7, cataracts and, 495
Lineage tracing, Cre-los recombinase system for study of, 601
Lm8, eye field transcription factor, 300
Lid suture, deprivation myopia from, 82
Ligneois, Nanette, 274
Light acceleration of photoreceptor
degeneration by, lack of oxygen supply to outer retina and, 566
continuous, refractive development and, 82
raising of oxygen levels in outer retina by, 565
responses to exposure to, Rpe65 alleles and, 650–651
retinal degeneration induced by, 16, 573
mouse strains with, 16
Light-dark transition test, 29
Lm7, cataracts and, 495
Lineage tracing, Cre-los recombinase system for study of, 601

744
INDEX
INDEX
Protection against, by degradation of photoreceptors, 565

Netrin-1
regulation of retinal ganglion cell axon exit from eye by, 383f, 384
retinal ganglion cell axon guidance through visual pathway and, 392, 392f

NEUBank, 663

Neurodegeneration, glaucoma and, 485, 485f

Neurofilament H, antibodies against as retinal ganglion cell marker, 193

Neuroglobin, retinal oxygen consumption and, 562

Neuronal plasticity, RALDH3 colocalization with markers for, 368, 369f

Neuronal tissue, in optic nerve, 201

Neuron-specific enolase (NSE), cell death and, 356

Neurotrophic factor gene therapy, 613

Neurotrophin-5 postnatal cortical maturation patterns defined by, 369–370, 370f
RALDH3 relationship with, 368–369, 369f

Neutrophils, Pseudomonas aeruginosa infections and, 507

Night blindness, stationary, congenital, 95f, 95–96

NMDA receptors (NMDARs), 223–225
NMDA, excitatory lateral geniculate nucleus responses and, 420

NMDA receptors (NMDARs), 223–225
ocular dominance shift and, 469
in reticulogeniculate synapses, 431, 439

NMDA-type glutamate receptor antagonist, stratum griseum intermediale burst generation and, 240

Nob knockout mice, reticulogeniculate synapses

Nod strain, diabetes in, 550

NOD/L4j strain, auditory evoked brainstem response in, 22

Noggin, eye field formation and, 301
differentiation of, 143

Nucleus of the optic tract (NOT), retinal projections to, 41

Null mutation. See Knockout mouse models

Nystagmus
fast phases of, 99–100, 100f
slow-vertical axis rotation engendering, 94
optokinetic, velocity storage integrator and, 95f, 95–96
optokinetic after-nystagmus and, 94
postrotatory, 94

Nya* mice
control of depolarizing bipolar mGlur6 signaling cascade in, 178–179, 179f
retinal ganglion cell responses in, 181
NZB/BINJ strain, taste ability in, 23
NZW strain, mutation and effect in, 62f
NZW/LacJ strain, photoreceptor response damage by light and, 575, 577
Onchocerca volvulus

ON and OFF pathways in mouse retina, Olary pretectal nuclei (OPT), retinal Oligodendrocytes, in optic nerve, 202

Olfactory ability, measurement of, 22–23

Off-vertical axis rotation (AVOR), 93–94, 94f

Odor preference, conditioned, 28

Odor discrimination ability, measurement of,

Oculomotor neural integrator, 96

Oculomotor control, importance of, 87

Oculography, applications of, 101

Ocular dominance (OD), mapping of, plate 26

ob/ob mice, diabetes in, 550

129/ReJ strain, auditory evoked brainstem segregation of

juvenile, mechanisms of, 443–445

behavioral correlates of, 447

chondroitin sulfate proteoglycans and,

behavioral correlates of, 447

ocular dominance column plasticity and,
mapping of gene expression as,

353–354, 354f

353–360

projections to, 41

ON and OFF pathways in mouse retina,

353–360

cellular and synaptic structure of,

353–354, 354f

segmentation of

mechanisms of, 358–360, 359f, 360f

retinal synaptic circuitry development

and, 354–357, 355f, 356f

synaptic activity and, 357–358

Onchocerca volvulus infections, 508

129/J. See 129P3/J strain

129P3/J strain

auditory evoked brainstem response in, 22

mutation and effect in, 62

129P3/J strain, mutation and effect in, 62

pain sensitivity in, 25

tactile sensitivity in, 24

129/ReJ strain, auditory evoked brainstem response in, 22

129S1/SvImJ strain

hearing and visual abilities in, 15t

129/S1, olfactory ability in, 22, 23

pattern discrimination in, 18

photoreceptor response damage by light

and, 575, 577

visual acuity of, 20

129S2/Sv strain, anxiety-related behavior

tasks and, 29

129/SvEms strain, learning and memory in,

27

129/SvEvTac strain

avoidance learning in, 28

pattern discrimination in, 18

129SveJ. See 129O1/SveJ

129/SvPasCrl strain, conditioned odor preference in, 28

129S-ter/C57BL/6 mice, olfactory ability in,

22, 23

129X1/Sv strain

auditory evoked brainstem response in, 22

pain sensitivity in, 25

Open field test, 29

Operant olfactometer, 22, 23

Opn4+/− mice, circadian photocentrainment

and, 210, 211

Opsins

of cones, expression of, 136, 138–139

development of, 305

signaling molecules responsible for expression of, 304–306

Optic chiasm

regulatory genes in retina and chiasm

important for patterning, 396–397

retinal ganglion cell axon divergence at,

393–396
crossed projection and, 395–396

uncrossed projection and, 393–395

retinal ganglion cell axon guidance

toward, 392f, 392–393

Optic disc

directed growth of retinal ganglion cell

towards, 382–384, 383f
targeting of retinal ganglion cell axons to,

383f, 383–384

Optic disc astrocyte precursor cells (ODAPs),

390, 390f

Optic fiber layer (OFL)

control of initial retinal ganglion cell axon

outgrowth polarity in, 381–382, 382f

retinal ganglion cell axon restriction to,

379–381, 380f

Optic nerve, 201–203

astrocytes and astrocyte progenitors in,

390, 390f

connective tissue in, 203, 203f
development of, 201–202

glaucomatous excavation of, prevention

by radiation treatment, plate 35

morphological features of, 201, 202f

neuronal and glial tissue in, 202–203, 203f

retinal ganglion cell axon projection

through, 391–392, 392f

vascular supply of, 203–204, 204f

Optic nerve head, 201, 202f

Optic neuritis, retinal ganglion cell axon

regeneration in, 409

Optic neuropathy

glaucomatous, retinal ganglion cell axon

regeneration in, 409

ischemic, retinal ganglion cell axon

regeneration in, 409

traumatic, retinal ganglion cell axon

regeneration in, 409, 409f

Optic vesicle (OV), 267

Optical imaging, for ocular dominance

plasticity assessment, 440f, 440–441,

441f

Optical interferometry tomometry (OIT), 480

Optics, of mouse eye, 74

Optineurin (OPTN), primary open-angle

glaucoma and, 482

Optokinetic after-nystagmus (OKAN),

velocity storage integrator and, 95f,

95–96

Optokinetic drum, 20

Optokinetic nystagmus (OKN), velocity

storage integrator and, 95f, 95–96

Optokinetic reflex (OKR), 88, 91, 91f

adaptation of, 98f, 98–99, 99f

measurement of, 112–113, 114f

Optomotor response, “whole body,” spatial

vision and, 81–82

Optomotor test apparatus, 17f

Ongocytes, loss during lens differentiation,

278

Orienting vestibulo-ocular reflex, 92

Otolith-ocular reflexes, 91–92, 92f

Outer nuclear layer (ONL), 635, 636f

Outer plexiform layer (OPL), 637

lateral inhibition in, 175

Oxygen, 559–569

delivery to retina, 559–561

choroidal circulation and, 560–561

retinal circulation and, 559–560

inhaled

blocking of vasogenesis by, 563

killing of photoreceptors by, 562–563,

564f, plate 48

lack of oxygen supply to outer retina

and, 562–563, 563f

lack of supply to outer retina, 562–568

acceleration of photoreceptor
degeneration by light and, 566

degeneration of edge of normal retina

and, 566–568, 567f

depression-induced hyperoxia and,

565–566

inhaled oxygen and, 562–563, 563f

reduction in photoreceptor metabolism

and, 564–565

retinal detachment and, 564

oxygen stress during development and,

568, plate 49

retinal consumption of, 561–562

in adults, 561f, 561–562

developmental onset of, 562

neuroglobin and, 562

retinal degeneration and, 568–569

Oxygen-induced retinopathy (OIR), 285,

553–554

epithelial cell death and, 293

mouse model of, 289–294. See also

Retinopathy, of prematurity (ROP)

characterization of, 289–291, 291f, 292f

cytokines and, 292–293

endothelial cell apoptosis and, 293

microglia and leukocytes and, 293–294

INDEX 747
Oxygen-induced retinopathy (continued)
retinal flat-mount preparation from,
plate 13
VEGF-A and, 291–292

P
P7 knockout mice, plate 42
P7 wild type mice, plate 42
P21 knockout mice, central retina from,
plate 41
P21 wild type mice, central retina from,
plate 41
p107
retinal development and, 313
rod development and, 316
p130, retinal development and, 313
Pac1r, circadian photoentrainment and,
565–566
P21 wild type mice, plate 42
P21 knockout mice, central retina from,
plate 42
P7 wild type mice, plate 42
P7 knockout mice, central retina from,
plate 41

Pericyte(s), retinal vascularization and, 288,
290–291
Pericyte recruitment, 642
Pericyte-derived angiopoietin-1, retinal
vascularization and, 288
Perlecans, cataracts and, 499–500
Phakinin, cataracts and, 498
Phenotypic variation
alleles as cause of, 649–651
genetic modifiers as cause of, 651–653,
652t
retinal degeneration and, 652–653
Photokeratometry, 76–77, 78f

Photoreceptors, 635, 636f, 637.
Photokeratometry, 76–77, 78f
Photoreceptors, 635, 636f, 637. See also
Cone(s); Rod(s)
candidates for light damage quantitative
trait loci and, 577–579, 578f
cell death of, pathways of, 678–679, 679f
Cx36 expression by, plate 5
degeneration of
by light, 566
Pde6b mutations leading to, 650
Rpe65 alleles and, 650–651
Rgyf1 mutations leading to, 650
degradation of, protection against retinal
neovascularization by, 565
depletion of, raising of oxygen levels in
outer retina by, 565
development of, 304–306
biological network characteristics and
relevance to photoreceptors and,
676–677
critical period in, 568
hierarchy in regulatory networks
underlying photoreceptor
development and, 677–678, 678f
NRL and gene profiling of purified
photoreceptors and, 676, 677f
expression profiling of, degeneration
networks and, 679–680
gap junctions of, 165–166, 166f
killing of, by inhaled oxygen, 562–563,
564f, plate 48
by light damage of, 566
light damage of, 573–579
gene modifier having strong influence
on, 573–575, 576f, 577, 577f
of mouse compared to other mammalian
species, 36
at peripheral margin of retina, stress from
early postnatal life and, plate 49
phagocytosis of outer segments of, 638
promoter transgenes and, 595
reduction in metabolism of, lack of
oxygen supply to outer retina and,
564–565
retinal pigment epithelium relationship
with, 639
targeted ablation to assess role of,
593–596
toxicity of depletion-induced hyperoxia to,
565–566
Photoretinoscopy, infrared, 74–76, 76f, 77
Photonsensitivity, circadian, 209
Physical contact, plasticity and, 455f,
455–456
Pigment dispersion syndrome (PDS),
483–483, 484f
Pineal melatonin rhythm, circadian
photoentrainment and, 210
Ptx2, in cornea and lens development, 701
Ptx3, cataracts and, 493–494, 494f
Ptx3, in cornea and lens development, 701
Placental growth factor (PGF), retinal
vascularization and, 286–287
Plasmin, delivery using electroporation. See
Electroporation
Plasminogen activator inhibitor-1 (PAI-1),
diabetes and, 550–551
Plasticity
environmental enrichment and. See Visual
cortical plasticity
in lateral geniculate nucleus, mouse
compared to other species and,
432–433
ocular dominance. See Ocular dominance
(OD) plasticity
reticolugeniculate synapses remodeling
and, 431–432
Platelet-derived growth factor-A (PDGF-A),
retinal vascularization and, 287
Platelet-derived growth factor-B (PDGF-B)
diabetes and, 551
retinal vascularization and, 288
Postrotatory nystagmus (PRN), 94
Posttranslational modifications, of proteins,
715
Potassium currents, in dorsolateral geniculate
nucleus, 220–221
POU homeodomain transcription factors, in
cornea and lens development, 701
POU4F1, retinal ganglion cell development
and, 194
Pou4f2 expression in retinogenesis, plate 16
genes regulated by, 327–328
POU4F2, retinal ganglion cell development
and, 194
POU4F3, retinal ganglion cell development
and, 194
PPT1, 612
P/Q mutants, 101
Presumptive lens ectoderm (PLE), 267
Primary congenital glaucoma (PCG), 483
Primary open-angle glaucoma (POAG)
models of, 489
mouse model of, 481–482
Prior experience, enhancement of ocular
dominance plasticity
by, 445f, 445–446, 446f
Promoter transgenes, and photoreceptors,
595
Prostaglandin analogues, for intraocular
hypertension and glaucoma, 644
Protein(s). See also specific proteins
posttranslational modifications of, 715
proteome-wide identification of species of,
715
Rb family of, retinal development and,
311–319
intrinsic genetic compensation and
redundancy and, 312f, 312–313
Retinal ganglion cells (continued)
directed growth toward optic disc, 382–383, 383f
dorsal-ventral differences in mechanisms regulating, 385–386 growth cones and guidance cues and, 379, plate 21 regulation of, 328 restriction of axons to optic fiber layer and, 379–381, 380f
Retinal vasculature (continued)

- isolation of retinal vasculature and subsequent gene expression studies, 688, 689f, 691–692

- leukocyte adherence in retinal microvasculature of diabetic mouse and, plate 47

Retinal waves, 343–348

- cellular mechanisms underlying, retinal development and, 343–344, 344f circuits generating, functional stages of, plate 17

- gap junctions and, 346–347

- measurement techniques for, 343 mediation of, 357

- stage I, properties of, 347, plate 18

- stage II

 - mechanisms of, 345f, 345–346

 - properties of, plate 18

 - spatiotemporal properties of, 344–345, 345f

- stage III, properties of, 347

- visual circuit development and, 348, 349f

Retinaldehyde, 364

- Retinaldehyde dehydrogenases (RALDHs), 364

- Retinaldehyde, 364

Retinal waves, 343–348

- dorsal visual stream and, 373f, 373–374

- photoreceptor development and, 304, 305

- RALDH2 and, 367, 367f

- RALDH3 and, 367, 368f

 - colocalization with markers for neuronal plasticity, 368, 369f

- maturation patterns in postnatal cortex defined by, 369–370, 370f

- relationship between neurotrophin-3 and, 368–369, 369f

- reporter mice and, 365f, 365–366

- retinoid system and, 364

- Retinoid flow in visual cycle, in visual cycle, 726–727

- 11α- Retinol dehydrogenase, in visual cycle, 725

- Retinol-binding protein, in visual cycle, 725

- Retinopathy

 - of detachment, oxygen to relieve, 564

 - diabetic. See Diabetic retinopathy

 - oxygen-induced, 553–554

 - diabetic.

 - of detachment, oxygen to relieve, 564

 - diabetic.

 - oxygen-induced, 553–554

 - of prematurity (ROP), 205–294, 642

 - mouse model for study of, 285, 289

 - scoring system for, 291

- Retinopathy scoring system, 291

- Retinoreceptor nuclei, of mouse compared to other mammalian species, 40–45

- Retinoscopy, streak, 75

- RF/lf strain, hearing and visual abilities in, 16

- Rhodopsin gene, 63

- Rhodopsin gene mutations, 651

- RIIS/lf strain, tactile sensitivity in, 24

- Rlhpr−/− mice, 726

- RNAi, inducible, in retina, plate 62

- Rod(s).

 - See also Photoreceptors

 - bipolar cells of, ON and OFF pathway segregation and, 354

 - development of, Rb and, 313–317, 315f, 316f

 - dysfunction of, cone damage due to, 566 gap junctions of, 167

- GPF expression in, plate 63

- of mouse compared to other mammalian species, 36

- scaling of, 263

- spatial vision and, 81–82

- Rod monochromatism, gene replacement therapy for, 612–613

- Rod pathways, proximal, gap junctions in, 167–169, 168f

- Rod visual cycle. See Visual cycle, rod

- Roscoe B. Jackson Memorial Laboratory, 13

- Rpe65, Leu450Met variant in, reduced retinoid system and, 365f, 365–366

- Rpe65−/− mice, retinal pigment epithelium lipofuscin in, 539–540, 540f

- Rpegrf knockouf mice, as model for Leber congenital amaurosis, 612

- Rpegrf 1 mutations, 650

- RPR65, 637

- Isomerohydrolase reaction and, 723–724

- Rupture of lens cataract, 501

- Rs, as eye field transcription factor, 299–300

- Rx-Cre transgenic mice, 274

- RXX-t, opsins and, 305

- Rx/vas homeobox transcription factor, 269

S

- Saccade(s), 87, 88, 99

- Saccade-like rapid eye movements

 - (SREMS), 233

 - electrically induced, in mice, 235–238, 237f

 - measurement of, 233–234, 237f

 - spontaneous, in mice, 234f, 234–235, 236f

- Saccadic eye movements, 233–242

 - study methods for, 233

 - superior colliculus and, 233. See also

 - Superior colliculus (SC)

- SB strain, mutation and effect in, 62f

- Scaling, of eye and cortex, 263–264

- Schematic eye modeling, 73–74, 74f

- Schlemm’s canal

 - aqueous humor outflow and, 131

 - inner wall cells of, 132, 132f

- Scotopic signal transmission, of mouse compared to other mammalian species, 36f, 36–37

- Scotopic threshold response (STR), pattern electroretinography and, 124

- Second messengers, retinal ganglion cell

 - axon growth ability and, 408

- Self-complementary AAV vectors (scAAV), 613–614

- Senescence-accelerated mouse (SAM), 500

- Senile cataracts, mouse models for, 500

- Sequential model of evolution, 6–7, 7f

- Serial analysis of gene expression (SAGE), 662, 663, 687

- Severe combined immunodeficiency (SCID), 506

- Shh, control of retinal progenitor cell

 - proliferation by, 328

- SHIRPA test battery, 30

- Shrew mice, 3–5, 8

- Single-cell recordings, cones and, 139, 140f–142f

- Single-unit recordings, cones and, 139, 140f–142f

- Senile cataracts, mouse models for, 500

- Sequential model of evolution, 6–7, 7f

- Serial analysis of gene expression (SAGE), 662, 663, 687

- Severe combined immunodeficiency (SCID), 506

- Shh, control of retinal progenitor cell

 - proliferation by, 328

- SHIRPA test battery, 30

- Shrew mice, 3–5, 8

- Single-cell recordings, cones and, 139, 140f–142f

- Single-unit recordings, cones and, 139, 140f–142f
INDEX

Sox1
752
Sox
S-opsin, cone, expression of, 136, 138–139
Sonic hedgehog.
Sodium currents, in dorsolateral geniculate
Snell, George D., 13
Smooth pursuit movements, 87, 88
SM/J strain
Smithies, Oliver, 35
Small eye artifact, 74
Slit signaling, control of initial retinal
eye field formation and, 301
directed growth of retinal ganglion
cell axon guidance and, 381–382, 382f
Spatial resolution
Spatial information, retinogeniculate inputs
directed growth of retinal ganglion
cell axon guidance and, 381–382, 382f
Spatial vision
illuminances and, 81, 81f
rods and cones and, 81–82
Spectacle lenses, refractive errors induced
by, 82
Spermann, Hans, 268
Spiny mice, 3–4, 5, 6
Sp1/Kruppel-like transcription factors, in
cornea and lens development, 702
Spontaneous activity, development, postnatal retinal ganglion cell
development and, 121–122, 122f
SPRET/EiJ strain
hearing and visual abilities in, 15t
pattern discrimination in, 18
visual acuity of, 20
Staggerer mutant mice, olfactory ability in,
22, 23
Staphylococcus aureus
Streptozotocin, diabetes induced by,
Suprachiasmatic nucleus (SCN)
circadian photoentrainment and,
209–210, 211, 212f, 212–213
retinal projections to, 40, 41, 212f,
212–213
SwEvTac. See 129/SwEvTac strain
SWR/J strain, hearing and visual abilities in,
16
Synaptic circuitry, retinal, development of,
ON and OFF pathway segregation
and, 354–357, 355f, 356f
Synaptic remodeling, 429–435
description of, 429
in lateral geniculate nucleus, 430f,
430–431, 431f
activity and, 431–432
comparison with remodeling in other
regions of visual system, 433–434
genes involved in, 434–435
plasticity in lateral geniculate nucleus
and, 432–433
lateral geniculate nucleus synapses and,
429–430
Synaptic transmission, retinal. See Retinal
synaptic transmission
Systogenesis, defects in Rh-deficient retinas,
317–318, 318f

T
T cells
antigen-specific experimental autoimmune uveitis
induced by adoptive transfer of,
515
migration to eye, 521
defects in selection of repertoire of,
susceptibility to experimental
autoimmune uveitis and, 518
deficient peripheral tolerance and,
susceptibility to experimental
autoimmune uveitis and, 518–519
Pseudomonas aeruginosa infections and, 507
Tactile sensitivity, measurement, 24
Tactile stimulation, plasticity and, 455, 456
Tail flick test, 24
TALE homeobox proteins, eye field
transcription factor regulation by,
301
Targeted ablation, to assess role of
photoreceptors, 595–596
Targeted gene manipulations, 594–595,
595f
Targeted mutagenesis, 63, 65–66
Taste ability, measurement of, 23–24
Taste aversion, conditioned, 28–29
Tau-lacZ reporter, for study of retinal
ganglion cells, 399
Taurine, photoreceptor development and,
304, 305
Tem mutant, 501
Visual behavior, correlates of ocular dominance plasticity and, 447
Visual circuits, development of, retinal waves and, 348, 349f
Visual cortex, 243–252
binocular
mapping ocular dominance in, plate 26
retinotopic mapping of, plate 25
callosoal connections of, 46–47, 47f
connections of, 248–251
areal hierarchy of, 251, 251f
consolidation of, environmental enrichment and, plate 29
between different cortical areas, 249, 250f, 251
with dorsal thalamus, 46
subcortical inputs and, 248 within V1, 248–249
with ventral thalamus and mesencephalon, 46
Vi, topographic maps of, plate 8
corticotectal cells of, physiology of, 46
extrastriate, in mouse compared with other mammalian species, 51–52, 52f
extrastriate lateromedial area intracortical connections in, plate 9, plate 10
interareal feedforward and feedback connections in, laminar organization of, plate 11
intrinsic associational corticocortical connections of, 46
long-range associational corticocortical connections of, 46
maps of, plate 7
of mouse compared to other mammalian species, 45–52
anatomy and, 45f, 45–47
binocularity and, 49–51, 50f
physiology and, 47–59, 48f
spatial acuity and temporal resolution and, 51–52
nonoriented cells of, physiology of, 47
orientation selectivity of, 48–49
relationship between cytoarchitectonic areas and topographic maps of, 248
topographically defined areas of, 246f, 246–248, 247f
visuotopic organization of, 45–46
Visual cortical plasticity
environmental enrichment and, 449–459
early-life stimulation effects on neuronal and behavioral development and, 450–451
neural consequences of environmental enrichment and, 450
visual system development and, 451–459, 452f, 454f, 455f, 457f, 459f
experience-dependent, 465–473
adult ocular dominance plasticity and, 472–473, 474f
mechanisms of ocular dominance shift in mice and, 468–471
monocular deprivation in juvenile mice and, 468, 469f, 470f
stimulus-selective response potentiation and, 471–472, 472f
visually evoked potential recording technique and, 466, 467f, 468
Visual cycle, 721–729
cone, 727, 728f, plate 69
inhibition of formation of retinal pigment epithelial lipofuscin fluorophores and, 543f, 543–544
proteomic analysis of, 727–729
of interacting components, 727–729
retinoid, 637
rod, genetic analysis of, 721–727, 722f, plate 8
all-trans-retinol dehydrogenase and, 722–723
ATP-binding cassette A4 and, 723
cellular retinaldehyde-binding protein and, 726
cellular retinol-binding protein type 1 and, 725
11-cis-retinol dehydrogenase and, 725
interphotoreceptor retinoid-binding protein and, 726
isomerohydrolase and, 723–724
lecithin:retinol acyltransferase and, 723
retinal G protein-coupled receptor and, 724–725
retinoid flow in visual cycle and, 726–727
retinol-binding protein and RBP receptor and, 725
Visual detection, measurement of, 16, 17f, 18
Visual evoked potentials (VEPs) for ocular dominance plasticity assessment, 439–440, plate 31
pattern electroretinographic measurement of, 120–121, 121f
recording of, for assessing visual cortical plasticity, 466, 467f, 468
Visual field, of mouse compared to other mammalian species, 39f, 39–40, 40f, 41f
Visual function, measuring gains and losses of, behavioral methods for, 116, 116f
Visual pathways, organization of, plate 1
Visual phenotypes, screening of, behavioral methods for, 115–116
Visual stimulation, ON and OFF pathway segregation and, 357–358
Visual system
development of
acceleration by environmental enrichment, plate 28
consolidation of visual cortical connections and, plate 29
environmental enrichment and, 451–459, 452f, 454f, 455f, 457f, 459f, plate 29, plate 30
special features in mouse affecting research, 66–67
Visual thalamus. See Lateral geniculate nucleus (LGN)
Visual vestibulo-ocular reflex (VVOR), 89f, 89–90
Visual water box, 16, 17f, 18, 20
Visual water task, for measuring visual perception, 110–111, 111f, 112f
Visual-somatosensory interaction, 24
Vitamin A. See also Retinoic acid (RA)
deficiency of, 364
excess of, 364
role in vision, 363
uptake from RBP, 725
Vogt-Koyanagi-Harada disease, 516
von Frey filament test, 24
Vpac2r, circadian photocentrainment and, 214
W
Water T-maze, modified, 16, 17f
Whole-cell voltage-clamp recordings, for retinal wave measurement, 343
Williams syndrome, visual cortical functions in, 245
Wnt signaling, eye field transcription factor regulation by, 300–301
Wolbachia, 508
X
X-linked juvenile retinoschisis (XLRS), gene replacement therapy for, 611
X-linked recessive familial exudative vitreoretinopathy (XLEVR), 328
Y
Yamamoto, Yuhiro, 270
Yerkes apparatus, 16, 17f
Z
Zernike coefficients, 80
Zic2
retinal ganglion cell axon divergence at chiasm and, 394f, 395
as retinal ganglion cell marker, 193
Zonular apparatus, 129, 130f
ZRDCT strain, 269