A-current, see current, A-current adaptation
 in conductance model, see neurons, Wilson model neuron
 in LIF neuron, see leaky integrate-and-fire neuron
regular spiking cell, 116
adaptive filtering, see control theory, Kalman filter
alphabets
 and coding, 6, see also neural codes
 neural activity as, 7
 physical properties as, 7, 29
AMPA receptors, 179, 246
analog-to-digital converter, 30
representation in, 31
Aristotle, 275
arm movement, 52–56, see also vector, representation
cerebellum, 280
Cognit science, 219
coincidence detection, 155, see also transformations, nonlinear
communication channel, 143
learning, 294
communication theory, see also information theory
computations, see transformations
connection weights
 analytically determining, 145
 and dynamics, 228, 235
 biasing functions, 161
dynamically changing, 280
 for cross product, 175
 for nonlinear transformations, 158
 for population-temporal representation, 146
 for vector transformations, 152
 forcing positive, 166
learning, see learning
 negative, 160–167
 standard problems with, 161
control theory, 2, 220
 adapted to neurobiology, 18
cerebellum, 280
communication theory, see also information theory
cerebellum, 280
cognitive science, 219
coincidence detection, 155, see also transformations, nonlinear
communication channel, 143
learning, 294
communication theory, see also information theory
cerebellum, 280
computations, see transformations
observability of, 17
without noise, 37
population-temporal, 131
representational, 9, 13
temporal, 92, 103, see also temporal representation
plausibility, 113
transformational, 13, 158, 176, see also transformations
with basis vectors, 187, see also vectors, representation
with PSCs, 113, 115
with temporal filters, 98
Deiters’ nucleus, 172
see also vestibular system, 350
delta function
as neural spike, 82, 92
to define tuning curves, 68
dendrites, 10
and subunits, 160
nonlinear, 154, 156, 159
synaptic dynamics, 223, 230
design specification
description of, 21
example, 46, 54, 74, 174, 264
dot product, 51n, 186
dynamic systems theory, 250, see also attractor networks
and control theory, 258
and recurrent networks, 252
and single neurons, 120, 124
and subnetworks, 258
chaotic attractor, 259
cyclic attractor, 267
line attractor, 252, see also neural integrator
plane attractor, 254
point attractor, 237, 251
ring attractor, 253, 257
dynamics, see also control theory
higher-level, 15
importance of, 219
Einstein, 168
encoding, 6, see also representation
and connection weights, 17
binary, 31, 32
temporal, 92
with basis vectors, 187
eye position, see also neural integrator
drift, 232
horizontal, 36, 44–49, 136–139, 232–243
Fourier basis, see basis functions
Fourier decomposition, 65, see also basis functions function
decoding, 69
optimal linear, 68
design specification for, 75
encoding, 66
probability density function representation, 278
representation, 63–69
defining, 65
distinguishing from vector, 72
encoding function, 66
examples, 72
in LIP, 74
multi-modal, 79
population-temporal, 138
probability density functions, 278
relation to vectors, 69–72, 245
summary, 80
transformational, 200
functions
decoding, see also transformations
defining sets of, 64
sets of coefficients, 70
estimating coefficients, 71
for temporal coding, 99
Monte Carlo estimates, 71
Γ’, 38
decomposition of, 192–196
with noise, 43
ganglion
retinal, 7
head-direction system, 253
heterogeneity, 210–216
and dynamics, 257
and experiments, 12
and representational capacity, 213
and representational usefulness, 215
and supported transformations, 216
importance of, 210, 216
higher-level representation, see representation, higher-level
hippocampus, 253
implementation
description of, 21
example, 47, 55, 58, 77, 136, 175, 233, 244, 265
information capacity, see neurons, information capacity of
information theory, 2, 110, see also neurons, information capacity of
interneurons, 161
jitter, see also noise
Index

and correlation times, 108
and temporal code, 133
in neural transmission, 41

Kalman filter, see control theory, Kalman filter
Kirchoff, 85
labyrinths, 169, see also vestibular system
lamprey, 260–273
and central pattern generators, 260
and control theory, 261, 265, 272
and traveling waves, 262
as a cyclic attractor, 267
biphasic oscillator models of, 260, 261
connectivity, 271
dynamic tensions in, 265
fluid dynamics and, 263
integrating top-down and bottom-up data, 260
locomotion, 260
mechanics of, 265
neurophysiology and behavior of, 261
simulating at multiple levels, 270
top-down and bottom-up data, 271
Laplace transform, 223
large-scale models
lamprey, 260
vestibular system, 168
working memory, 244
lateral intraparietal cortex, 64, 72, 244, see also working memory
anatomy and physiology of, 73
function of, 73
neuron tuning curves in, 74
leaky integrate-and-fire neuron, 81–89
and correlation times, 109
as an RC circuit, 84
decoding spikes from, 107
derivation of, 83
effects of parameter changes, 87
implausibility, 88
information transmission in, 105–115
optimal temporal decoders, 105
plausibility, 82, 88
power in spike train, 108
rate equation derivation, 86
rate model, 36
voltage equation, 85
voltage trace, 82
with adaptation, 116
decoding, 119
information capacity, 118
learning, 293–300
analyzing weights from, 295
as fine tuning, 294
challenges posed by, 298
compared to analysis, 297
Hebbian, 294, 295
limitations, 14
the communication channel, 294
versus analysis, 14
Legendre basis, see basis functions
LIF neuron, see leaky integrate-and-fire neuron
linear systems theory, 219, see also control theory
look-up table, 279
MatLab simulation package, xvii, 12n, 19
mean square error
and SVD, 195
and transformational decoders, 158
decreases as 1/√N, 47, 190
due to noise, 43
for temporal decoding, 100
matrix-vector notation, 192
minimizing, 38
residual, 209
static, 43
decreases as 1/N², 48
with noise, 42
without noise, 37
modern control theory, see control theory
modularization, 151, 173
motor cortex, see arm movement
MSE, see mean square error
multiple level simulations, see lamprey
negative weights, see connection weights, negative
neural codes, see also representation
not choosing between, 91
population, 11–13
rate, 7, 89, 108
synchrony, 7
timing, 7, 90, 108
neural control theory, see control theory, neural
neural engineering
addendum to principles of, 16, 18
defined, 1–3
first principle of, 15, 16, 39, 230
methodology, 15, 19–23
summary of, 22
principles of, 15–19, 230–231
second principle of, 15, 17, 231
third principle of, 15, 18, 231
neural integrator, 36, 44, 136, 232–243, see also eye position
and cellular properties, 241
and network properties, 240
as a line attractor, 253
block diagram, 233
controlling dynamics of, 239
drift velocity of, 237
dynamics of, 238
effective time constant of, 235
goldfish, 19, 243
human, 243
input/output transfer function, 49

driving forces of, 238
effective time constant of, 235
goldfish, 19, 243
human, 243
input/output transfer function, 49

neurobiological systems
as representing, 4–13
theory of, 23–25

neurons
adaptation, see adaptation
affinity for performing statistical inference, 279
and inhibition, 161
and noise, see noise
and transistors, 11, 30, 33, 39, 40
as devices, 9–11, 41
biophysics of, 10, 34
canonical models, 115, 122
cell membrane, 83
classes of, 119, 124
conductance model, 123
diversity, 1, 2
heterogeneity of, see heterogeneity
Hodgkin-Huxley, 123
identifying tuning curve of, 66
information capacity of, 10, 19, 40, 109–115
adapting LIF model, 118
conductance model, 125
LIF neuron, 112
LIF neuron with PSCs, 113, 115
model summary, 127
neurobiological examples, 110
per frequency channel, 111
θ-neuron model, 122
inhibition, 166
memory in, 10
pairs, 94–96, 242
and linearity, 95
examples, 94
persistent activity in, 252, see also working memory
populations of, 11, see also population representation
power consumption, 41
precision of, 10, see also neurons, information capacity of
Purkinje cells, 280
regular spiking, 116
reliability, 41
response function defined, 34
θ-neuron model, 118
tuning curve defined, 34
various models of, 115–126

Wilson neuron model, 123
neuroscience
and dynamics, 219
and representation, 5
central problem of, 5
explanations in, 5
interplay of experiment and theory, 180
theoretical, xiii
theory for, 24
Newton, 24, 29, 262
NMDA receptors, 179, 246
noise, 18, 40–44, 47, 55, 132, 208–210, 275, 284, 313
nonlinear control, see control theory, nonlinear
nuclei prepositus hypoglossi, 36, 44, 232, see also neural integrator
neuron tuning curve, 36
population tuning, 38

opponency in neurons, see neurons, pairs
orthogonal basis, see basis vectors
otoith, 168, 169, see also vestibular system
overcomplete basis, see basis vectors
pairs of neurons, see neurons, pairs
pattern theory, 276, see also statistical inference
PCA, see principle components analysis
PDF, see statistical inference, probability density function
population representation, 12, 33–44
function, see function
relation to temporal representation, 131
scalar, see scalar vector, see vector
population-temporal filter, 131
population-temporal representation, 11, 129–132
and noise, 132–136
and PSCs, 132, 137
decoding, 140
encoding, 139
finding optimal filters, 132
Monte Carlo estimates, 132
of functions, 138
postsynaptic current, see temporal representation
potassium current, see current, potassium
primary visual cortex, 291
orientation tuning, 66
tuning curve, 67
principle components analysis, 192, 201
probability density function, see statistical inference, probability density function
probability theory, 275, see also statistical inference
PSC, see postsynaptic current
pseudo-inverse, 209
push-pull amplifiers, 94
refractory period
 absolute, 83–85, 88, 105
 relative, 121
representation
 analysis, 185, 206–210
 and codes, 6
 analog, 9
 differences, 8
 and explanation, 4, 5
 and noise, 209, see also noise
 and use, 6, 180, 182
 basic, 48, 62, 225
 capacity, 207, 213
 discovering, 8, 180
 distributed, 33
 engineered, 30–33
 goodness of, 206
 and dynamics, 236, 237
 and heterogeneity, 210
 higher-level, 48, 62, 225
 importance of, 29
 improves as $1/N$, 47–48
 in digital computers, 30
 in neuroscience, 6
 mixing levels of, 234
 Morse code, 6
 neurobiological, 4, 33, see also population-temporal representation
 matrix-vector notation, 192
 with noise, 42
 overcomplete, 190, 269, see also basis vectors
 population, see population representation
 population-temporal, see also population-temporal representation
 precision of, 44, see also noise
 quantifying usefulness, 208, 215
 relation, 5, 181, 189
 seeming arbitrariness of, 8, 180
 temporal, 81, see also temporal representation
 utility of, 4
 representational hierarchy, 13, 61–63
 definition of levels, 80
 multiple levels, 269
 table of, 63
 usefulness of, 62
 rostral medial vestibular nucleus, 36, 45, see also vestibular system
saccular macula, 169
saddle-node bifurcation, 120, see also dynamic systems theory
sampling densities, 2
scalar
 encoding magnitude, 30
 magnitude and unit, 29
 neuron tuning curve, 36
representation, 29, 42–44
 summary, 80
semicircular canals, 57, 168, 169, see also vestibular system
 biophysics of, 57
 shifter circuit, 280
 singular value decomposition, 78, 194
 singular values, 194
 and importance, 197
 and noise, 209
 and vector transformations, 204
 cutoff value, 209
 Gaussian versus linear populations, 205
 sodium current, see current, sodium
 spin, see basis vectors
 stationarity, 99
statistical inference, 275–281
 and dynamics, 284
 and neural architectures, 279
 and the Kalman filter, 287–293
 bottom-up evidence, 280
 conditional distribution, 277
 disambiguating evidence, 281, 283
 feed-forward, 278
 feedback architectures, 280
 joint distribution, 276
 marginal, 277
 multi-modal distributions, 277
 non-stationary, 286
 parameter estimation, 283–287
 probability density function, 277
 top-down evidence, 280
SVD, see singular value decomposition
 system description
 description of, 19
 example, 44, 53, 57, 73, 169
temporal representation, 89–105
 and correlation times, 102, 107
 and encoding functions, 104
 and neuron pairs, 96, 100
 and noise, 133
 and optimal filters, 102
 and windowing data, 101
 as linear filtering, 104
 combining rate and timing codes, 91
 debate concerning, 89
 decoding, 97, 103
 plausibility, 113
 with PSCs, 113, 115
 defining signal ensembles, 99
 encoding, 92
encoding and decoding process, 93
optimal filter, 106
optimal filter compared to PSC, 106
relation to population representation, 131
residual error, 102
top-down and bottom-up data integrating, see lamprey
transformations, 13–15
addition, 148
analysis, 185, 196–205
and noise, 200
and dynamics, 14
and modularization, 150
and representation, 13
and SVD, 196
basis of
ordering, 197
in communication channel, 143
in neurobiology, 143
linear, 143–152
nonlinear, 153–160
as cellular property, 155, 156
as network property, 157
cross product, 173
examples, 153
in neurobiology, 17
orthogonal basis of, 198
polynomial, 201
supported by Gaussian tuning curves, 204
supported by linear tuning curves, 200
utility of, 4
vector
analysis, 202
linear, 151
translational vestibular ocular reflex, 177
utricular macula, 169
vector
decoding, 52
optimal linear, 53
optimal versus non-optimal, 56
preferred direction, 53
defined, 185
encoding, 51
neuron tuning curve, 52
cosine, 52, 53
preferred direction, 51
relation to functions, 69–72
representation, 49–56, see also basis vectors
equivalent, 62
examples, 49
orthogonal versus overcomplete, 59
summary, 80

with LIF neurons, 51
representation in vestibular system, 169
space defined, 186
vesicle unreliability, 41
vesibular system, 57–59, 168–182

working memory, 72–79, 244–249, see also lateral intraparietal cortex
and activity bumps, 249
and decoded bumps, 248
increase in firing rate during, 250
multiple targets, 72, 244, 248
parametric, 73, 244, 248