Abstracting transformation, 137
for dataflow diagram, 168–73
for state diagrams, 139
Abstraction
and dependency diagram, 283
and process analysis, 162
by total aggregation, 164
Abstract ports, 300
Accessibility, management of, 118–19
Accessibility constraint, 100
Accessibility dependencies, 115–16, 293, 304. See also Flow dependencies
coordination mechanisms for, 21, 388, 408
managing of, 304–305
Acer Group, 33, 395, 397
Acorn project, 483
Activities
classification structure for, 4, 246–52
coordination, 112
core, 111, 387
dependencies between, 23
identifying of (process description technique), 346–51
naming conventions for, 251
vs. objects, 42
in Process Handbook, 222
in software example, 89
specializations of, 391
in SYNOPSIS, 501–502
atomic and composite, 502
Activity-focused analysis, 352, 359–63
Actors
identifying of (process description technique), 345–46
multiple, 367
in resource assignment, 93
Adhocracies, 48, 67, 70
ADLs (Architecture Description Languages), 24, 125, 511–12
AES Corp., 391
Affordances, in grammatical models, 200–204, 205
Agency theory, 80–81
Agent commitment violations, 429
Airline reservation systems, computerized, 68
Alphabetic class reference, in PIF, 559–67
Analogies (“cousins”), 33, 49, 401
distant, 395, 461
Analysis and design techniques, development of, 188–89
And-prerequisites, 117, 308
Animals living in packs, 82
Architecture Description Languages (ADLs), 24, 125, 511–12
Architectural mismatches, SYNTHESIS for, 508
Artificial intelligence
audience from, 10
and dependencies, 88
and generic processes, 23–24
Attractor (business model archetype), 239
Attributes
dependencies as, 502–503
in PIF, 553–54
descriptions of, 560–67
process, 449
Attribute space
of dataflow diagram, 167
refinement of, 162–64
Auctions, 81
electronic, 446
information contract in, 429
sealed-bid, 425–26
Automated support
for dependence, 26
for inheritance, 26
Ballot genre system, 469–71, 472, 478, 479, 485, 491
Barings Bank failure, 434–38
Baseline analysis, 64
Behavioral coordination theory, 69
Benchmarking, 32, 155, 381
cases for, 243
“Best practices,” 3, 32
databases of, 34
for exceptions, 423–24
generation of novel combinations of, 418
knowledge sharing about, 380
of tomorrow, 13
Best Software, 391
Bidding genre system, 491
Bidding schemes, 51, 54, 60–61, 71, 74
Biological classification, 5–6
Biological systems
and coordination, 82–83
and distributed or parallel processing systems, 73–75
Blackboard architecture, 70
BMW, 32, 391, 397
Boeing
design conflicts at, 447
total simulations of, 21, 388, 408
Bottom-up approach, 31
Bottom-up goal identification, 58
Bramble, 542
Branching factor, in specialization hierarchy, 250
Broker (business model archetype), 239
Bundle recombinator, 410, 414–16
Bundles
of related alternatives, 18, 385, 387, 405, 450
of specializations (Handbook), 225, 476, 517
Bureaucracy and classification system, 6
Business Activity Model, MIT (BAM), 231–35
deriving of, 235–38
and other models, 240
Business educators, as audience, 3, 12
Business model, 238
Business Model Archetypes, MIT, 238–40
Business process(es), 336. See also Process(es)
generic, 28
increasing scale and complexity of, 423
Business process redesign (BPR), 9, 13, 373
challenge of, 379
computer applications for, 549–50 (see also
Process Interchange Format)
conflict repository for, 460
design conflict management expertise for, 448
with exceptions analysis methodology, 424–34
and Barings Bank failure, 434–38
challenge to, 423–24
generation of ideas needed for, 403
with knowledge repository, 379–80, 400–401
approach of (deep and surface structures), 381–89
case example for (hiring process), 389–400
evaluation of, 401–402
future efforts on, 402
and previous approaches, 380–81
with Process Recombinator, 403, 408–409
in comparison to related process design tools, 419
deep structure identified, 409–10
different surface structures found, 410–17
future efforts on, 419–20
implementation of, 420–21
new process designs compared, 417–18
sources of power of, 418
process repository for, 457
Business process reengineering
coordination issues for, 289
of Hammer and Champy, 261, 274–85
Business templates, 4

CAD/CAM, for business processes, 516
Carrier resource, 298
Case examples, in Process Handbook, 4, 221, 243–45
CASE (computer-assisted system engineering) tools, 26, 125–26, 368, 515, 523
Center for Coordination Science (CCS), MIT, 7, 124, 384, 404, 448, 466, 476
Centralization of decision-making, and information technology, 68–69
Cessna, 391, 397
Champy, J., 261, 274–85
Change, increased pace of, 525
Change management, 103–104
product workbench for, 515
Chase Manhattan, 397
Chomskian generative grammar, 195, 204. See also Deep structure
Cisco, 244
Class hierarchy, PIF, 554
Classification, of processes, 211–12
Classification system or structure, 4
for activities, 246–52
and biological classification, 5–6
and engineering handbooks, 6–7
and Human Genome Project, 6
Periodic Table, 4–5
Client/server architecture, 321–22
Code generator, in product workbench, 521
Coding schemes, for organizational processes, 210
Cognitive Science Laboratory, Princeton University, 469
Cognitive scientists, as audience, 12
Collaboration, 50, 50n
Collaborative authoring tools, 72
Collaborative work, debate on nature of, 525–26
Commitments
and exceptions analysis, 424, 425–26, 428–29, 432, 434
taxonomy of, 428–29, 430
Common knowledge, 62–63
Common Lisp project, 469, 470, 473, 479, 480, 481, 482, 483, 491
Common output dependency, 96, 101–102, 106
Communication
in coordination, 61, 62–63, 72
genres of, 466, 493 (see also Genre taxonomy)
and organizational success, 465–66
Communicative actions, six (5W1H) aspects of, 468n
Compass. See Process Compass
Competence, and performance, 205–206
Competition, 50, 50n
Competitive bidding markets, 74
Completeness, of specializing transformations, 164
Component frameworks, 126
Component integration, 109. See also Design handbook for software components integration
Composite dependency patterns, 295
Composition dependency, 103–104, 106
Comprehensive models of business processes developed elsewhere, 240–43
Computer(s), in coordination, 48
Computer applications, for business process redesign, 549
Computer-assisted system engineering (CASE) tools, 26, 125–26, 368, 515, 523
Computer-based group decision-making tools, 62
Computerized airline reservation systems, 68
Computer science, 23–25
and coordination, 60, 79–80
producer-consumer problem in, 100
and resource allocation, 53–54
specialization and inheritance in, 42
Computer scientists, as audience, 3, 10, 11, 12
Computer software. See at Software
Computer-supported cooperative work, 69
Computer systems
considerations in design of, 63
and coordination, 50
distributed and parallel processing in, 73–76
flow dependencies in, 101
goals and activities in, 58
vs. human “editors,” 35
Concurrency, of resource-in-use, 299, 314, 478
Concurrent engineering, 13, 56
Conflict
 design, 447–48 (see also Design conflict management)
 naming, 569
Conflicting goals, coordination of, 64–65
Conflict management, 447. See also Design conflict management
Conflict management meta-process, 455–57, 458
Conflict repository, MIT, 457–61, 463. See also Design conflict management repository
Conflict taxonomy, 448, 452–55
Connector, software, 503
Constraints
 accessibility, 100
 in grammatical models, 200–204, 205
 identifying and formulating, 208
 and language faculty, 204
 monitoring of (process support system), 531–33
 planning options based on (process support system), 533–36
 usability, 99, 105, 365
Consultants, as audience, 3, 12
Consumability, of resource-in-use, 299, 314
Consumer sharing dependencies, 314
Contract Nets protocol, 73
Contractor (business model archetype), 239
Control, in computer science, 297
Controlled hierarchy, 309, 310, 322
“Conversation for action,” 69
Cooperation, 50, 50n
 prerequisite relationship in, 294
 Cooperation relationships, 324
 Cooperative work tools, 69–73, 76
Coordination, 4, 34–35, 41–42, 47
basic processes in, 51–52, 59, 60
 managing producer-consumer relationships, 54–56, 60
 managing shared resources, 52–54, 60, 72, 79
 managing simultaneity constraints, 56–57, 60
 managing task-subtask dependencies, 57–58, 60, 72
 for business process reengineering, 289
 communication in, 61, 62–63, 72
 definition(s) of, 49–50, 78–79
 as dependencies management, 19–22, 50–51, 59, 64, 89, 111, 243, 387, 475, 499
 and artificial intelligence, 88–89
 future research on, 107–108
 mechanisms of, 89–90
 and multiple-task or -resource dependencies, 96–102
 organizational research on, 86–88
 and problems, 89
 in Process Recombinator, 407
 and task-resource dependencies, 91–96
 and tasks, 90–91
 exceptions related to, 424–25
 in field study, 33–34
 group, 87
 group decision-making in, 62, 72
 impersonal, 87
 of information using genres, 474–79, 485–86
 integration as, 104
 interdisciplinary study of, 47 49, 78
 in organizational design, 22
 personal, 87
 as perspective, 63
 and designing of cooperative work tools, 69–73, 76
 and designing of distributed and parallel processing computer systems, 73–76
 and effects of information technology on organizations and markets, 65–69, 76
 and identifying coordination components, 64–65
 and parametric vs. baseline analysis, 63–64
 and Process Handbook, 9, 404
 research agenda on, 76–78
 and resources, 91–102 (see also Resources)
 restaurants as forums for, 185 (see also at Restaurant)
results on from selected fields, 51, 79–83
in software system design, 499–500, 504, 514 (see also Design handbook for software components integration)
and Architecture Description Languages, 511–12
and coordination theory, 511
future research on, 513–14
and open software architecture, 512–13
Coordination (cont.)
 and SYNTHESIS system, 500–10
 in task assignment process, 59–61, 72
Coordination activities, 112
Coordination design space, 296
Coordination mechanics, 71
Coordination mechanisms, 81–82
 alternative (hiring case example), 391–92
 decomposition of, 92
 and dependencies, 21, 85–86, 87–88, 89–90, 104–107, 182, 337–38, 388, 407–408, 450, 475, 517
 dimensions of, 87
 generic, 243
 in knowledge base, 426
 taxonomy of, 426–28
 for information, 478
 and process description technique, 336
 for task assignment, 60–61
 temporal aspects of, 478
Coordination process design rules, 127
Coordination processes
 design space of, 291, 292
 models of, 243
 representing and classifying of, 76–77
Coordination process or protocol (software system), 127, 499, 503
Coordination structures, 202
Coordination theory, 8–9, 47, 111, 292, 337–38, 511
 in context of various kinds of systems, 78
 an dependencies typology, 41
 in deriving MIT Business Activity Model, 235–38
 and goal resolution, 365
 and information technology, 47–48
 and process description technique, 339–42
 in comparison to other process analysis techniques, 366–67
 and dependency analysis, 364–65
 and design of analysis tools, 368–69
 evaluation of, 368
 implications of for practitioners, 369–70
 Step 1 of (Setting process boundaries), 342–44
 Step 2 of (Collecting data), 344–45
 Step 3 of (Identifying actors and resources), 345–46
 Step 4 of (Identifying activities), 346–51
 Step 5 of (Identifying dependencies), 351–63
 Step 6 of (Verifying model), 363
 and trade-off matrices, 365–66
 and Process Handbook, 475–76, 511
 and software components, 114
 in understanding and representing work, 335
Coordinator (computer-based cooperative work tool), 70, 71, 72
CORBA, 126, 512
Core activities, 111, 387
Coupling, between components (Perrow), 286
“Cousins” (analogies), 33, 401
distant, 395, 461
Coverage, of design conflict management repository, 462
Cover term, 207
Creativity techniques, 381
Creator (business model archetype), 239
Cross-fertilization, 34
Cross-level (multi-level) analysis, 177–78
Cultural structures, 202
Cumulation of results, 36
Cumulative events, 310, 312
Cumulative flows, 321
Cumulative prerequisites, 307, 311

Daily build, Microsoft, 21, 388, 408
DARPA/ROME Laboratory Planning Initiative, 552
Database, Handbook, 25, 27–30, 420
 of case examples, 245
 and deep structure, 389
 process descriptions in, 448
Databases
 discretionary, 72
 discussion, 526
Data collection
 in process description technique, 344–45
 on supply chain management, 421
Data flow dependency, 118, 120, 121
Dataflow diagrams (DFDs), 143–45
 formal definition of, 166–67
 maximal execution set of, 168
 refining/abstracting transformations for, 168–73
 specialization of, 145–47
 specializing and refining transformations for, 147–49
Data resources, 298
Davenport, T. H., 261–74
Deadlock, as resource problem, 95–96
Decision-making, group, 62
Decision tree, specialization tree as, 407
Decomposition, 449
 of coordination mechanism, 92
 exhaustive process, 147
 of generic conflict management meta-process, 456
 goal (top-down), 57–58, 72
 of mechanisms for resource allocation, 95
 of process, 147, 148
 into activities, 348, 349, 350
 into subactivities, 384–85, 404, 405, 449
 of ‘Sell product’ activity, 476, 477
 and SYNOPSIS, 501, 503
Decomposition browser, 520
Decomposition editor, in Synopsis, 507
Decomposition hierarchy, 476
for electronic memo genre, 483
Deep structure, 204, 373, 374, 380, 381–82, 382n, 383, 409
analyzing of, 389–90
in Business Activity Model, 235
in case example (business process redesign), 393, 395
different levels of, 385, 386
in Process Recombinator, 408
and process specialization, 384
of selling, 224
Deletion, specialization by, 158–50
accessibility, 115–16, 293, 304
coordination mechanisms for, 21, 388, 408
managing of, 304–305
between activities, 23
alternative coordination processes for, 51–52
automated support for, 26
characterizing of, 77
as commitments, 425
common output, 96, 101–102, 106
composition, 103–104, 106
consumer sharing, 314
and coordination, 19–22, 50–51, 59, 64, 89, 111, 243, 387, 475, 499
and artificial intelligence, 88–89
future research on, 107–108
and multiple-task or -resource dependencies, 96–102
organizational research on, 86–88
and problems, 41
in Process Recombinator, 407
and task-resource dependencies, 91–96
and tasks, 90–91
data flow, 118, 120, 121
between divisions of same company, 58
during, 329
exact flow, 435
finishes, 331
fit, 20, 42, 236, 267, 387, 388, 475
and commitments, 428
and communication genres, 476
coordination mechanisms for, 21, 388, 407, 408
and genre coordination, 485
in Hammer and Champy’s business process reengineering, 279, 283–84
flow (producer/consumer), 20, 42, 96, 99, 114, 181, 293, 319–23, 387, 475, 505
in case study (MAG), 358
and commitments, 428
and communication genres, 476
coordinating of, 284–85, 478
coordination mechanisms for, 21, 388, 407, 408
and resource flow, 267
in restaurant example, 186–88
and hierarchies of specification-level abstractions, 24
identifying of (process description technique), 351–63
information contract, 429
interconnection, 109, 112
meets, 327
in multiple modes of use, 102
mutual exclusion, 114, 323, 326
and open architecture, 512
overlap, 329
pooled, 85, 87
prerequisite, 114, 117–18, 294, 306–308, 323, 326
and Barings Bank, 435
in case study (MAG), 358
coordinating mechanisms for, 21, 388, 408
managing of, 308–13
prevention, 327
in process assembly, 181
and process description technique, 336
reciprocals, 85, 87
as represented in Process Handbook, 253, 255
resource sharing, 294, 314
sequential, 85, 87
shared characteristics of, 58–59
shared resource, 181
sharing, 20, 42, 96, 97–99, 105, 114, 236–37, 267, 314–15, 387, 388, 475, 505
and commitments, 428
and communication genres, 478
coordination mechanisms for, 21, 388, 407, 408
and genre coordination, 485
managing of, 315–19
simultaneity, 330
simultaneous end, 332
among software components, 42, 497, 499
specialization and decomposition of, 21–22
starts, 330
task, 102–103
and commitments, 428
between tasks or between resources, 102–104
task-subtask, 57–58, 60, 72
taxonomy of, 86, 104, 106, 113
and design handbook of software
interconnection, 122
of flow dependencies, 114–18
timing, 114, 294, 323–32, 505
transfer, 182, 358
Dependencies (cont.)
usability, 115, 293, 302–303
in case study (MAG), 358
coordination aspects related to, 478
coordination mechanisms for, 21, 388, 408
managing of, 56, 118, 182, 303–304
user sharing, 294
Dependencies space, 113–14, 292–295
Dependency analyses, as basis for process improvement, 364–65
Dependency design space, 296
Dependency diagram
in Davenport’s process innovation, 267, 269–73
for genre taxonomy, 482, 483, 484, 485
in Hammer and Champy’s business process reengineering, 279–83
in Perrow’s discussion of high-risk systems, 287–88
Dependency editor, in product workbench, 522
Dependency-focused analysis, 352–54, 356–59
Dependency patterns, composite, 127
Dependency recombinator, 410, 412–14
Dependency types, vocabulary of, 291–92
“Descendants” of generalizations, 33
Design. See also Software system design
concurrent vs. serial, 452
organizational, 155
of organizational processes (grammatical methods for), 213–14
participatory, 56
of process analysis tools, 368–69
Design alternatives, 295
Design assistant, 125–26, 374, 506–507
Design conflict management, 447–48. See also Conflict management
Design conflict management repository, 451
and conflict management meta-process, 455–57, 458
and conflict taxonomy, 452–55
evaluation of, 461–63
future efforts for, 463
key uses for, 457
business process redesign, 460
pedagogy, 448, 458–59
research, 448, 457, 460–61
Design handbook for software components integration (interconnection), 291, 292
and Architecture Description Languages, 125
and CASE tools and software design assistants, 125–26
and component frameworks, 126
and dependencies space, 292–95
framework for, 111–19
future directions for, 127
and generic model of resource flows, 300–32
accessibility dependencies in, 304–305
and flow dependencies, 319–23
prerequisite dependencies in, 306–13
sharing dependencies in, 314–19
timing dependencies in, 323–32
usability dependencies in, 302–304
motivation for, 109–11, 126
and Process Handbook project, 124–25
and SYNTHESIS system, 119–24, 504–505
and taxonomy of resources, 297–300
Design-implementation flow, 285
Design methods
Davenport’s process innovation, 261–74
Hammer and Champy’s business process reengineering, 261, 274–85
and Perrow on high-risk systems, 261, 285–88
Design process for generating executable applications, 122–24
Design space, 291, 295–97
coordination, 77, 296
dependency, 296
Design techniques, development of, 188–89
DFDs. See Dataflow diagrams
Digital Equipment Corporation, Spark project at, 551
Directions, “imperative” (process support system), 536
Disconfirmation, criterion of, 209–10
Discretionary databases, 72
Discussion databases, 526
Distant analogies, 395, 461
Distributed processing in computer systems, 73–76
Distribution of processes, 212–13
Distributor (business model archetype), 239
Divisibility, of resource-in-use, 299, 314, 478
Division of resources, 315, 317, 319
Doubletree, 32, 391
Dow Corning, 443
process expository of, 445
Downward propagation, 160, 161
Duality of structure, 467
During dependencies, 329
Dynamic organizational activity, support systems for, 526. See also Process support systems in dynamic contexts
Eager flows, 321
e-business, generating order processing alternatives for (process specialization example), 149–55
eBusiness case examples, in Process Handbook, 244, 246
eBusiness Process Handbook (ePH), 222
Economic order quantity, 56
Economics
classical microeconomics, 80
Flowcharts, 367
in case study (MAG), 358
and commitments, 428
and communication genres, 476
coordination of, 284–85, 478
mechanisms for, 21, 388, 407, 408
and resource flow, 267
in restaurant example, 186–88
taxonomy of, 21, 21–22, 99–101, 105–106, 114–18, 293–94, 300–10, 388 (see also Accessibility dependencies; Prerequisite dependencies; Usability dependencies)
Flow graph, resource, in Davenport’s process innovation, 264–67, 268
Flow management mechanisms, 100–101
Flow management work list, 540
Frameworks, in Process Handbook, 221
FreeFlow, 542
General Electric, 33, 397, 446
Generalizations (“ancestors”), 33
in sample Handbook entry, 225, 227–28
Generalizing transformation, 137
uses of, 161
Generating of business ideas. See Business process redesign
Generation of new design, 381
Generative grammar, Chomskian, 195, 204. See also Deep structure
Generativity, 131, 131n, 335
of grammar, 194
Generic business processes, 28–29
Generic model of resource flows, 300–302
accessibility dependencies in, 304–305
and flow dependencies, 319–23
prerequisite dependencies in, 306–13
sharing dependencies in, 314–19
timing dependencies in, 323–32
usability dependencies in, 302–304
Generic models of business activities (Process Handbook), 221, 229–30
Generic verbs, 247–50
Genre repertoire, 481
Genres of organizational communication, 467–68
coordination of information through, 474–79
evolution of over time, 473–74
implementation of information about, 483
Genre taxonomy, 466, 468–73, 492–93
and coordination, 485–86
prototype of, 479–86, 493
and Sloan School on-line admissions, 486–92
gIBIS system, 70, 72
"Families" of related processes, 42. See also "Cousins;" "Sibling"
Finishes dependency, 331
Firm size, and information technology, 67–68
Fit dependencies, 20, 42, 236, 267, 387, 388, 475
and commitments, 428
and communication genres, 476
coordination mechanisms for, 21, 388, 407, 408
and genre coordination, 485
in Hammer and Champy’s business process reengineering, 279
coordination of, 283–84
Flow(s)
coordination mechanisms for, 388
in dataflow diagram, 145
Goal decomposition, top-down, 57–58, 72
Goal identification, bottom-up, 58
Goals
conflicting, 64–65
in deep structure, 382
identifying of, 342–44
personal (differences in), 93
potentially divergent, 365
and processes, 179, 180
in software example, 89
GradAdvantage, 487–88, 490
Grammar, 193–95
and organizational processes, 192–93, 195–206, 214
methodological considerations in, 206–11
surface structures from, 382
Group decision-making, 62, 72
Groupware, 48, 69, 525, 541
Hammer, M., 261, 274–85
Handbook of organizational processes, 369
Hardware resources, 298
“Heidi’s problem” (support-systems scenario), 528, 531, 532, 534–35, 536, 540
Hierarchical structure, 9, 404. See also Specialization
Hierarchy. See also Specialization hierarchy of actions (processes), 17
of classes (PIF), 554
controlled, 309, 310
decomposition, 476
vs. market, 94
object specialization (and upward propagation), 160–61
template-oriented component, 516
High-risk systems, Perrow on, 261, 285–88
Hiring process
case examples of
for business process redesign, 389–400
in Process Handbook, 244
as Process Handbook field test, 31–34
deep structure for, 409–10
via Internet, 395, 397, 446
and process repository, 446
Home Depot, 397
Human actors
assumptions about, 526–27
deterministic and voluntaristic, 183
decision-making by, 525–26
Human Genome Project (HGP), 6
ICT. See Information and communication technologies
Implicit invocation architectures, 322
Implicit resource relationships, 294
Included term, 207
Information and communication technologies (ICT), 177
as impacting process, 180–81, 183–84
multi-level impact of, 178, 183–84, 186, 190
process perspective on, 188
Information contract dependency, 429
Information flows
and coordination mechanisms, 478
economic analysis of, 81
managing of, 80
Information Lens system, 70, 71, 72
Information system for restaurant, as process specialization example, 140–43
Information systems research, and organizational issues, 177–78
Information technologists, as audience, 3, 12
Information technology (IT)
and coordination theory, 47–48, 65–69, 76
in example comparing restaurants, 185–88
and mass customization, 516
Infrastructure commitments violations, 429
Inheritance, 9
automated support for, 26
and specialization, 34
Innovation, need for, 379
Innovative eBusiness examples, in Process Handbook, 244
Insects, social, 82–83
Installation of employees, 414n
Institutional structures, 201
Integration, 104
Integrity checker, in product workbench, 519–20, 521
“Invent the Organizations of the 21st Century” (MIT research initiative), 421
International Benchmarking Clearinghouse (IBC), Process Classification Framework of, 240–41
International Workflow Management Coalition, 571
Internet, 465. See also Web site; World Wide Web
hiring via, 395, 397, 446
and location of genre system, 472–73
Sloan School admissions on, 486–92
Intuitive appeal, of MIT Business Activity Model, 234
“Introducing the Organizations of the 21st Century” (MIT research initiative), 421
Just-in-time inventory control or transfer, 13, 21, 55, 100, 388, 408, 425, 475–76
Kearney, AT, consulting firm, 31, 32, 389
Knowledge, common, 62–63
Knowledge base. See also Database, Handbook; Databases
of coordination processes, 426
for Process Handbook project, 3, 435
and Process Recombinator, 419–20
Knowledge Interchange Format, 571
Knowledge management, 374
Knowledge (process) repository of Phios, 443, 336
process redesign with, 379–80, 400–401
approach of (deep and surface structures), 381–89
case example for (hiring process), 389–400
evaluation of, 401–402
future efforts on, 402
and previous approaches, 380–81
for Process Recombinator, 403 (see also Process Recombinator)
Knowledge Sharing Initiatives, 571
Kotler, Philip, 242
Landlord (business model archetype), 239
Language faculty, and organizations, 204–205
Lazy flows, 321
Lean Enterprise Manufacturing Model, 241
Learning organization, 13
Leeson, Nicholas, 434, 436, 438
Lexicon, 197
identification of, 207
Library science, audience from, 12
Linguistics, in analysis of group action, 69–70
Links between activities, 26
Linnaeus, Carolus, 5
Location
coordination aspects related to, 479
of genre/genre system, 482
Lockstep flows, 321
Lockstep prerequisites, 307, 311
Logging, and prerequisite violation (Barings Bank), 436–38
Logic of analysis, 209–10
London Business School, 244
Lotus Notes group conferencing system, 73
“MAG Services” (fictional marketing services company), 339, 341–62, 364–65, 366
Malone, Thomas W., 443, 446
Management science, audience from, 12
Managers, as audience, 3, 12
Managing of information flows, in computer science, 80
of producer-consumer relationships, 54–56, 60, 62
of shared resources, 52–54, 60
of simultaneity constraints, 56–57, 60
of task-subtask dependencies, 57–58, 60, 72
Market(s), and information technology, 65–69, 76
Marketing Management (Kotler), 242
Market research, for usability, 56
Market transactions, evaluation of, 65
Markov models, and syntactic models, 208
Marriott Hotels, 32, 244, 391, 446
Mass-customization, 516
production workbench for, 523, 524
Maximal execution set, for dataflow diagram, 168
Maximal execution set semantics, 134, 135, 156n, 162
Mechanism design theory, 81
Meets dependencies, 327
Memoryless events, 310, 312
“Mercenaries, intellectual,” 68
MES conditions, 168
Meta-process, conflict management, 455–57, 458
Meta-process information, 448
Methodological considerations, of grammatical models, 206–11
Methodologies, 31
Michaelangelo, on creation as choice, 143
Microsoft Access, 25, 420
Microsoft’s daily build, 21, 388, 408
Microsoft Windows, 25
MIL (Module Interconnection Languages), 125
Miller, George, 249
Minimal execution set semantics, 134, 156n, 157–58
MIT Business Activity Model (BAM), 231–35
deriving of, 235–38
and other models, 240
MIT Business Model Archetypes, 238–40
MIT Center for Coordination Science (CCS), 7, 124, 384, 404, 448, 466, 476
MIT conflict repository, 463. See also Design conflict management repository
MITD eBusiness Awards, finalists for, 384
MIT Process Handbook project. See Process Handbook Project
MIT Scenario Working Group, 516
MIT Sloan School of Management. See Sloan School of Management, MIT
Modeling design methods, 261. See also Design methods
Modeling languages, 157
Models
of business processes developed elsewhere, 240–43
of coordination processes, 243
verifying of (process description technique), 363
Models, generic. See Generic model of resource flows; Generic models of business activities
Module Interconnection Languages (MIL), 125
“Molecules” (reusable systems dynamics components), 256
Monsanto, 391
Motorola, 33, 395, 397
Moves, in organizational action, 197
Multi-level research, problem of, 177–78
Multi-Media Handbook for Engineering Design, 6–7
Multiple actors, 367
Multiple task or resource dependencies, 96–102
Multiple theories, 190
Mutual adjustment, for coordination, 82
Mutual exclusion dependencies, 114, 323, 326
Naming conflict, 569
Naming conventions, for activities, 251
National Institute of Standards and Technology (NIST), 575
Navigation links, 26, 246
New Pig, 397
New Product Design (Eppinger), 242
Nierstrasz, O., 157
Nonshareable resources, 98–99
Normal Accidents (Perrow), 285–88
Notes group conferencing system, 73
Object-oriented programming, 17
Objects, vs. activities, 42
Object specialization, 157–58
and deletion, 158–59
Object specialization hierarchies, and upward propagation, 160–61
OLE, 126, 512, 513
Onsale, 446
Ontologies, realist vs. nominalist, 182–83
OpenDoc, 126
Openness, and genres in electronic medium, 479
Open Scripting Architecture, 512
Open software architecture, 512–13
Operations research, and coordination, 60, 80–81
Orderings, alternative, 392
Order processing dataflow diagram of, 144
for e-business (process specialization example), 149–55
Organization(s), and information technology, 65–69, 76
Organizational communication, genres of, 467–68.
See also Genre taxonomy
Organizational design
coordination in, 22
and process specialization, 155
Organizational practice, improving of, 13–14
Organizational processes. See also Process(es) grammar as model for, 192–93, 195–206, 214
methodological considerations in, 206–11
representation of, 14–15
specificity frontier of, 527–28
type of, 189
Organizational research, on dependencies and coordination, 86–88
Organizational researchers, as audience, 3, 10, 11, 12
Organizational science, and multiple theories, 190
Organizational structure of future, 515
and Product Workbench, 524
Organization theory and coordination, 60, 81–82
and knowledge repositories, 547
and resource allocation, 53
Organization theory and design, 22–23
Organizing, definition of, 192
Organizing knowledge, vs. simulating performance, 23
Or-prerequisites, 117, 308
Oval system, 72
Overlap dependencies, 329
Parallelism, in dataflow diagram, 167
Parallel processing in computer systems, 73–76
Parametric analysis, 63
Partially Shared Views (PSV) translation scheme, 550, 551, 567
Participatory design, for usability, 56
PCF (Process Classification Framework), 240–41
Peer synchronization, 117–18, 309, 310, 322
Performance, vs. competence, 205–206
Performance programs, and syntactic constituents, 198–99
Periodic Table of the Elements, 4–5
Perishable flows, 320
Perishable prerequisites, 307
Perrow, C., 261, 285–88
Persistent event protocols, 310
Persistent flows, 320
Persistent memoryless events, 312
Persistent prerequisites, 306, 311
PERT chart, 367
Petri nets, 70–71, 76, 161, 367, 419, 553
Phasic analysis, 208–209
Philosophy, in analysis of group action, 69–70
Phios Corporation, 8, 222–23, 244, 443
Phrase structure rules, 200
PIF. See Process Interchange Format
PIF. See Process Interchange Format
Planning, and composition dependency, 103
Plural Soar, 23
Polymer system, 71, 72
Pooled dependencies, 85, 87
Prerequisite constraints, 54–55, 99–100, 105–106
Prerequisite dependencies, 114, 117–18, 294, 306–308, 323, 326. See also Flow dependencies and Barings Bank, 435
in case study (MAG), 358
coordination mechanisms for, 21, 388, 408
managing of, 308–13
Prevention dependencies, 327
Princeton University, Cognitive Science Laboratory at, 469
Process(es), 43, 336–37
active and inactive, 167
as activities and interdependencies, 180–83
alternative views of, 26, 27
classification of, 211–12
commitments in, 424, 432 (see also Exception analysis methodology)
components of, 179–80
in dataflow diagram, 145
as distinct entities, 35
generic, 28–29
and ICT research, 177
as organizational grammar as model for, 192–93, 195–211, 214
representation of, 14–15
specificity frontier of, 527–28
theory of, 189
related (sample Handbook entry), 224
and research paradigms, 182–83
research and practice recommendations for, 188–90
and sentences, 199–200
service (restaurant example), 185–88
specialization of, 15–19 (see also Process specialization)
taxonomy of, 450–51
as unit of analysis, 189
Process analysis tools
design of, 368–69
improvement needed in, 36
Process attributes, 449
Process boundaries, setting of (process description technique), 342
Process-centered research framework, 183–84
Process class, refinement of, 163
Process Classification Framework (PCF), 240–41
Process Compass, 15, 17, 229, 251
for Dow Corning, 445
Process description
exchange of, 550 (see also Process Interchange Format)
verbal account as, 366
Process description technique (coordination-theory based), 339–42
in comparison to other process analysis techniques, 366–67
and dependency analysis, 364–65
and design of analysis tools, 368–69
evaluation of, 368
implications of for practitioners, 369–70
Step 1 of (Setting process boundaries), 342–44
Step 2 of (Collecting data), 344–45
Step 3 of (Identifying actors and resources), 345–46
Step 4 of (Identifying activities), 346–51
Step 5 of (Identifying dependencies), 351–63
Step 6 of (Verifying model), 363
and trade-off matrices, 365–66
as case-based reasoner, 24
challenge of, 547
as classification system, 4
for activities, 246–52
and biological classification, 5–6
and engineering handbooks, 6–7
and Human Genome Project, 6
and Periodic Table, 4–5
common exchange format for, 575
and conflict repository, 448, 451, 457–61, 463
contents of, 9, 221–23, 421
case examples, 243–45
comprehensive models of business processes developed elsewhere, 240–43
MIT Business Activity Model, 231–38, 240
MIT Business Model Archetypes, 238–40
coordination mechanisms in, 404 (see also Coordination; Coordination mechanisms)
and coordination perspective on software design, 511
coordination theory in, 475–76 (see also Coordination theory)
dependencies in, 253, 255, 404, 476 (see also at Dependencies)
exceptions in, 253, 256, 423, 432 (see also Exceptions analysis methodology)
field-testing of (case study), 31–32
future research on, 547
and genre taxonomy, 466, 479 (see also Genre taxonomy)
models of coordination processes in, 243
multiple versions of, 221–22
potential of, 258
primary elements of, 217
process description in, 538
and Process Recombinator, 403, 420–21 (see also Process Recombinator)
Process Handbook (cont.)
process specialization in, 404 (see also Process specialization)
as resource rather than prescription, 35
resources in, 253
sample entry in, 223–29
specialization in, 476 (see also Specialization)
and specialization hierarchy, 156
and SYNOPSIS, 511
syntax of, 480
systems dynamics elements in, 256, 257
theoretical foundations of, 8, 41
coordination, 41–42 (see also Coordination)
process, 43 (see also Process)
specialization, 42 (see also Specialization)
underlying concepts in, 449–51
uses of, 9–10, 14, 373 (see also Business process redesign; Knowledge management; Software design and generation)
Web (on-line) version of, 223, 471
illustration, 458, 459
Process Handbook project, 3, 443, 551
and design handbook for software component integration, 124–25
history of, 7–8
and Process Interchange Format, 551
Web-based browser in, 420
Process improvement, dependency analyses as basis for, 364–65
Process Innovation: Reengineering Work through Information Technology (Davenport), 261
Process innovations, 13
of Davenport, 261–74
previous approaches to, 380–81
Process Interchange Format (PIF), 23, 26–27, 550–51, 553–56, 575
alphabetical class reference in, 559–67
extensions of, 567–71
future directions for, 571
history and current status of, 551–53
modular structure of, 556, 567–71
rationale for, 556–59
Process management tools, importance of, 443
Process models, 261, 538–39. See also Design methods
verifying of, 363
Process parts, for selling, 444
Process types, for selling, 444
Process Recombinator, 393, 403, 408–409, 460
in comparison to related process design tools, 419
deep structure identified, 409–10
different surface structures found, 410–17
evaluation of, 418
future efforts on, 419–20
implementation of, 420–21
new process designs compared, 417–18
sources of power of, 418
Process redesign. See Business process redesign
Process repository. See Knowledge repository
Process representations, 161
Process selection flow, in Hammer and Champy’s business process reengineering, 279. See also Flow dependencies
dataflow diagrams for, 143–49
by deletion, 158–60
e-business order processing example of, 149–55
and extension semantics, 134–35
frame of reference for, 135–36
and generating of new processes, 141, 143
and organizational design, 155
restaurant information system example of, 140–43
and specializing transformations, 136–38, 156
and state diagrams, 138–39
Process specialization hierarchy, 131–32
and Process Handbook, 156
for restaurant example, 141, 142, 143
and upward propagation, 160–61
Process Specification Language (PSL), 575
Process support systems, 525
Process support systems in dynamic contexts and assumptions about human nature, 526–27
contributions of, 543
division of labor with user of, 536–37
evaluation of and lessons learned from, 540–41
implementation details of, 538–40
monitoring of constraints in, 531–33
other systems compared with, 541–42
planning of options in, 533–36
and re-usable process components, 538
scenario for ("Heidi’s problem"), 526, 528, 531, 532, 534–35, 536, 540
scripts made imperative, 536
and specificity frontier, 527–28, 530, 542
division of, 530
integrating of different spectra of, 537, 543
and providing of context, 530–31
and structure for emergent activity, 528–29
Process synchronization, 292
Process theory, 178–79
Process thinking, 191
Process visions, 263
Producer-consumer dependency. See Flow dependencies
Producer-consumer relationships, managing of, 54–56, 60, 62
"Produce as a typical business" specialization, 231, 233
Production (core) activities, 111
Product workbench, 515, 524
bank scenario for, 517–22
evaluation of, 522–23
future efforts on, 523–24
requirements for and theoretical foundations of, 515–16
Programming, object-oriented, 17
Programming languages, 109–10
Propagation, upward and downward (specialization hierarchies), 160–61
Prototypical uses, of design conflict management repository, 462–63
ProZessware, 542
Race conditions, 314, 322
Rapid prototyping environments, 515
Reciprocal dependencies, 85, 87
Recombinator. See Process Recombinator
Reengineering. See Business process reengineering
Reengineering the Corporation (Hammer and Champ), 274
Refinement, 162–64
exhaustive process decomposition as, 168–73
Refining transformation, 137
for dataflow diagrams, 147–49, 168–73
for state diagrams, 139, 164–66
Rendezvous interprocess communication paradigm, 322
Replication of resources, 319
Repository of knowledge. See Knowledge repository
Research, multi-level, 177–78
Research agenda
on coordination, 76–78, 107–108
on grammatical models of organizational processes, 211–14
Research facilitation, and conflict repository, 457, 460–61
Research framework, process-centered, 183–84
Research paradigms, and processes, 182–83
Resource access, 298
Resource allocation
and coordination, 52–54, 94–95
and nonshareable resources, 98–99
“scientific communities” for, 74–75
Resource allocation algorithms, analyzing stability properties of, 75
Resource flow graph
in Davenport’s process innovation, 264–67, 268
in Hammer and Champy’s business process reengineering, 275–79
Resource flows, generic model of, 300–302
accessibility dependencies in, 304–305
and flow dependencies, 319–23
prerequisite dependencies in, 306–13
sharing dependencies in, 314–19
timing dependencies in, 323–32
usability dependencies in, 302–304
Resource replication, 319
Resources
composition of, 106
and coordination, 91
and managing dependencies among multiple tasks and resources, 96–102
and managing of task-resource dependencies, 91–96
dependencies between, 102–103
identifying of (process description technique), 345–46
nonshareable, 98–99
as represented in Process Handbook, 253
shareable, 97–98
in software systems, 293
and tasks, 52
taxonomy of, 297–300
Resource sharing, 299–300
Resource sharing dependency, 294, 314
Resource transportability, 298
Resource usability. See Usability dependencies
Restaurant food service, grammar of, 193–94, 194, 212
Restaurant information system
as process specialization example, 140–43
as service-process example, 185–88
Restriction of access to resources, 315–18, 319
Reusability, 97, 478
Reusable components, for software system design, 127, 513–14
Role-Commitment-Violation analysis, 424
Rule-based grammar of organizing, 200–201
Sample entry in Process Handbook, 223–29
SAP customization, and specializing transformation, 156
SAP system, and Dow Corning, 443
Scenario Working Group, MIT, 516
“Scientific communities,” for information routing and resource allocation, 74–75
Scientific Community Metaphor (Ether system), 75
Scripts
and grammars, 194
“imperative” (process support system), 536
Sealed-bid auction, 425–26
Segmenting and assigning tasks, in computer science, 80
Semantic domain, 347
Semantics
extension, 134–35
and process diagram manipulation, 161
Sensory graph-plan (SGP), 540
Sentences, and processes, 199–200
Sequencing constraints, prerequisite dependencies as, 306
Sequencing problems, 55
Sequential dependencies, 85, 87
Service processes, example of (restaurant comparison), 185–88
Shareability, 97
Shared cognitions, 183
Shared context, in Hammer and Champy’s business process reengineering, 279
Shared resource dependencies, 181
Shared resources, managing of, 52–54, 60 in computer science, 79
and commitments, 428
and communication genres, 476
coordination mechanisms for, 21, 388, 407, 408
and genre coordination, 485
managing of, 315–19
Sharing of resources, 299–300
“Sibling,” 401, 450
Simultaneity, between tasks, 102–103
Simultaneity constraints, managing of, 56–57, 60
Simultaneity dependency, 330
Simultaneous end dependency, 332
Sloan School of Management, MIT on-line admissions process at, 480, 486–92
and Process Handbook, 443
Social grammar, 195. See also Grammar
Social insects, 82–83
Social systems, and distributed or parallel processing systems, 73–75
Soft Systems Methodology, 339
Software Architect’s Assistant, 125
Software architecture. See Design handbook for software components integration
Software connector, 503
Software design, practical problems in, 110
Software design and generation, 374–75
Software developers as audience, 3, 12
and knowledge repositories, 547
Software development, component-based, 109
SYNTHESIS system for, 124
Software engineering, audience from, 10
Software implementation, for Process Recombinator, 420–21
Software interconnection, as design problem, 127, 497–98, 514
Software system, coordination perspective for representing, 111–12
Software system design, coordination perspective on, 499–500, 504–505, 514. See also Design handbook for software components integration and Architecture Description Languages, 511–12 and coordination theory, 511
future research on, 513–14
and open software architecture, 512–13
and SYNTHESIS system, 500–10
Software tools, 4, 25–27
Spark project, 551
Specialization, 4, 22, 42, 131, 338–39
activity, 391
by delegation, 158, 159
and field study, 32–33
of objects, 157–58
and process description technique, 336
dataflow diagrams for, 143–49
by deletion, 158–60
e-business order processing example of, 149–55
and extension semantics, 134–35
frame of reference for, 135–36
and generating of new processes, 141, 143
and organizational design, 155
restaurant information system example of, 140–43
and specializing transformations, 136–38, 156
and state diagrams, 138–39
in sample Handbook entry, 224–25
and Synopsis, 501
Specialization hierarchy(ies), 24, 29, 30, 34, 246, 338, 388, 404–405, 417, 476, 517
branching factor in, 250
for communication genres, 483, 485
depth structure, 409
of prerequisite relationships, 308
process knowledge base, 519
for “Sell financial service,” 518
and Synopsis, 503–504
Specialization taxonomies, 458
Specializing transformations, 136–38
completeness of, 164
for dataflow diagrams, 147–49
and process specialization, 136–38, 156
and SAP customization, 156
for state diagrams, 139–40, 166
uses of, 161
Specificity frontier, 527–28, 530, 542
division of, 530
integrating of different spectra of, 537, 543
and providing of context, 530–31
Speech act theory, 468–69
Standardization for coordination, 82
for usability, 56
Stanford University, Virtual Design Team (VDT) project at, 551
Starts dependency, 330
Starvation, as resource problem, 95
State diagrams, 138–39
refining/abstracting transformations for, 139, 164–66
specializing transformations for, 139–40, 166
STILE, 125
Stores, in dataflow diagram, 145
Structured discussions, 461
Structures
coordination, 202
cultural, 202
and emergent activity, 528–29
institutional, 201
technological, 201–202
Subactivities, 15
in Davenport’s process innovation, 263–64
Subactivity recombator. 410–12
Subtyping, 158–59
SUN Hydraulics, 414
Supermarket
in analogy of grammar and organizational process, 196, 197–98, 199, 200, 201, 202–204
cultural norms in, 202
universal product code scanners in, 201–202
Supervision, direct, 82
Supply chain examples, in Process Handbook, 244
Supply chain management, data collection focused on, 27–28, 421
Supply Chain Operations Reference (SCOR) Model, 241
Supply chain visualization, project on, 256
Support systems for dynamic group processes. See Process support systems in dynamic contexts
Surface structures, 373, 380, 381
generating set of, 390–93
in Process Recombinator, 409
and process specialization, 384
Sybil (work tool), 70, 72
Symmetry, as modeling heuristic, 272
Synchronization, 57, 60
and dataflow diagrams, 145n
in interconnection protocol, 119
peer, 117–18, 309, 310, 322
process, 292
task, 98
SYNOPSIS Architecture Description Language, 122, 124, 125, 126, 292, 500–501, 502, 503, 504
and Process Handbook, 511
test application of, 508–509
Syntactic constituents, 214
identification of, 207
and performance programs, 198–99
Syntax of organizational processes, 192. See also Grammar
SYNTHESIS application development environment, 500–504
SYNTHESIS design assistant, 506–507
SYNTHESIS system, 111, 119–24, 125–26, 127, 514
for component-based software development, 507–10, 513
and design handbook of software component interconnection, 504–505
System commitment violations, 429
System resources, 298
Systems dynamics elements, in Process Handbook, 256, 257
Task assignment, 21, 54, 59–61, 72
in computer science, 80
Task dependencies, 102–103
Task Manager, 530
Task-resource dependencies, managing of, 91–96, 105
Tasks
composition of, 106
and coordination, 90–91
and managing dependencies among multiple tasks and resources, 96–102
dependencies between, 102–103
as developing shared understanding, 107–108
and resources, 52
Task-subtask dependencies, managing of, 57–58, 60, 72
TAXIS (modeling language), 157
Taxonomy(ies)
of actions or verbs, 249–50
of commitment types, 428–29, 430
of components, 516
of conflict management meta-process, 457
of conflicts, 452–55
of coordination methods or mechanisms, 104, 106–107, 426–28
and design handbook of software interconnection, 122
of dependencies, 86, 104, 106, 113
and design handbook of software interconnection, 122
flow dependencies, 114–18
evaluation of, 107
of exception handlers, 432, 433
of exception types, 253, 256, 429, 431
genre, 466, 468–73, 492–93 (see also Genre taxonomy)
knowledge base in, 426
or order processes, 150
Taxonomy(ies) (cont.)
 of organizational actions, 374
 of organizations, 22
 of processes, 450–51
 of relationships, 88
 of resources, 297–300
 of software interconnection problems and solutions, 113–14
 of specialization, 458
Team arrangements, 87
Team theory, 81
Technological structures, 201–202
Template-oriented component hierarchy, 516
Templates for describing activities, 26
Terminators, in dataflow diagram, 145
Textbook models, 242
Thank you note genre, 482
Theories, multiple, 190
Theory of organizational processes, development of, 189
Time, coordination aspects related to, 478–79
Time conflict management technique, 461
Timing of genre/genre system, 482
Timing dependencies, 114, 294, 323–32, 505
Top-down approach, 31
Top-down goal decomposition, 57–58, 72
Total process aggregation, 147
Total quality management, 13, 285, 401–402
Total simulations, Boeing, 21, 388, 408
Trade-off matrix(ices), 18, 19, 365–66, 417
Trade-off table(s), 385, 387, 405, 406
 in case example (business process redesign), 398
 for [mockup how?] bundle, 451
 in sample Handbook entry, 228–29
Trade Wave, 397
Transaction cost theory, 80
 and resource allocation, 53
Transfer, management of, 55–56
Transfer dependencies, 182, 358
Transformations
 abstracting, 137
 for dataflow diagrams, 168–73
 for state diagrams, 139
 generalizing, 137, 161
 process as, 179
 refining, 137
 for dataflow diagrams, 147–49, 168–73
 for state diagrams, 139, 164–66
 specializing, 136–38, 161
 completeness of, 164
 for dataflow diagrams, 147–49
 and process specialization, 156
 and SAP customization, 156
 for state diagrams, 139–40, 166
Transient flows, 321

Transient memoryless events, 312
Transient prerequisites, 307, 311
Transportability of resources, 298
Transportation costs, effect of changes on, 66
Trust of information, and genres in electronic medium, 479
Typology. See Taxonomy(ies)

Ulrich, Karl, 242
UML, 161
University of Edinburgh, AIAI at, 552
University of Toronto, Enterprise Modeling project at, 551–52
Unreliable actors, in computer science, 80
Upward propagation, 160–61
Usability constraints, 99, 105, 365
Usability dependencies, 115, 293, 302–303. See also
 Flow dependencies
 in case study (MAG), 358
 coordination aspects related to, 478
 coordination mechanisms for, 21, 388, 408
 managing of, 56, 118, 182, 303–304
 User sharing dependency, 294
 Uses, in sample Handbook entry, 225

Variance models
 and grammatical models, 192–93
 vs. process thinking, 191
Variance theories, 178
Variation and distribution of processes, 212–13
Verbs, generic, 247–50
Virtual Design Team (VDT) project, Stanford University, 551
Visions, process, 263
Visual Basic programming language, 25, 118, 119, 420, 512

Web interface, 26
Web site. See also Internet; World Wide Web
 for MIT conflict repository, 463
 for NIST, 575
 Phios, 8, 446
 for Process Handbook (both versions), 223, 458, 459, 471
 for Sloan School admissions process, 487
 Whirlpool, 32
Wild idea, 395
Womex, 397
Wordnet, 249
Words, and organizational moves, 197–98
Work
 problems in representing, 336–37
 technique for analysis of, 335–36 (see also Process description technique)
Workflow Management Coalition, 552
Work flow-management systems (WFMS), 521, 523, 525–26, 527, 541
Work process analysis, using genre taxonomy, 486–93
Work tools, cooperative, 69–73, 76
World Wide Web, 466. See also Internet; Web site conflict repository on (screen illustration), 459 process repository on, 443

Xerox Management Model, 242
X-Windows/Motif, 512

Yahoo!, and Sloan School students, 488, 492