Index

Italicized numbers refer to illustrations

Absoluteness, of space, 27
Accumulator model, of quantitative development, 217–18
Acredolo, L. P., 40, 42, 44, 46, 47, 48, 50, 52, 101, 103, 105, 166
Adams, A., 103
Adults
spatial location abilities of, 88
talk about space of, 181–97
Aerial photographs, ability to interpret, 157
Age
and competence in scaling, 160–61
and element-to-element correspondence, 153, 154, 155
and spatial information, 137
Alignment
children’s understanding of, 173–74
in competent map use, 151, 162–66
Allen, G. L., 74
Allocentric coding. See also Egocentric to allocentric shift
defined, 39
of infants, 11
Andreasen, G., 103
Animal models, spatial coding in, 20
Anooshian, L. J., 100
A-not-B studies, 39, 53, 211
evidence of, 55–57
and infant location choices, 68
infant response in, 63–65
limitations of, 78
and location memory, 61
solving problem of, 71
Antell, S. E., 92
Asymmetry effects
predictions about, 29
size of, 30
Autism, children with, 221
Bailenson, J. N., 169
Baillargeon, R., 57, 78, 82, 92, 128, 130, 132
Banich, M. T., 24
Baron-Cohen, S., 220
Bartsch, K., 55, 130, 131, 132
Bayesian procedures, 24, 93
Behavioral development. See Cognitive development
Behl-Chadha, G., 92
Bias
in grammar comprehension, 223
in spatial learning, 24, 25
Blaut, A. S., 157
Blaut, J. M., 157, 175
Blind children, spatial inference of, 7, 112–13, 115–16
Blindfolded children, spatial inference of, 115–16
Blind individuals, spatial representation of, 114
Bluestein, N., 166
Borke, H., 122, 123
Bowerman, M., 197, 198, 199
Brain. See also Left hemisphere; Right hemisphere
and behavioral development, 53
and visuospatial functioning, 33
Brain damage
patterns of dissociation in, 33
and spatial coding, 16
and spatial deficit, 3
Bremner, G. J., 40, 42, 44, 46, 47, 48, 103
Bridge task, in conservation of distance, 128–30, 132
Brown, A. L., 85, 86
Brown, R., 198
Bruner, J., 146
Bryant, D. J., 40, 42, 44, 46, 47, 48
Burgund, E. D., 37
Bushnell, E. W., 76
Campbell, P. F., 166, 167
Carey, S., 8, 82, 83, 201, 202
Case, R., 172
Categorical coding
for angular information, 97
of fine-grained spatial coding, 200
and hierarchical combination, 88–93
infant, 92–93
languages and, 186
in natural environments, 25–26
Categorical information, structure of, 182
Categorical language, and spatial language, 181, 197
Categories, formation of, 93
Category-adjustment model, of spatial location coding, 24, 25, 27, 29
Center, bias toward, 24, 25
Chapman, M., 122, 123
Chechile, N. A., 37
Cheng, Ken, 116
Children. See also Infants; Toddlers
direction giving of, 204–205
element-to-element correspondence in, 153–55
logical searching of, 138–40
model construction of, 170
Choi, S., 198, 199
Church, R. M., 217
Clearfield, M. W., 218
Coalition model, of grammatical comprehension, 223
Coding, size of objects, 33–34. See also Distance coding; Spatial coding
Cognitive development, 207. See also Spatial development
and changes in brain activity, 53
constructivist approach to, 144
doctrinal wars in study of, 225
domain-specific approach to, 3–4
nativist thinking about, 220
Piagetian theory of, 224
role of input in, 174
Cognitive tasks, socially situated nature of, 52
Color, vs. spatiotemporal attributes, 82
Communication, spatial development of, 180. See also Language, spatial
Compass directions, 184
Competence, defining, 70
Competence, spatial, 2
adult, 13
building of, 83
frames of reference for, 201–202
mature, 84
and variable environmental input, 213
Connectionist models, of infant location memory, 67–68
Conservation-of-length tasks, 127, 128
Constructivist approach, to cognitive development, 144
Contextual-scaling model, of spatial location coding, 29
Continuities, in spatial location, 5
Contrasting, of size of objects, 34
Coon, V., 36
Copying task, Piaget-Inhelder, 165
Cortical maturation, 51
Cosmides, 221
Cousins, J. H., 100
Cramer, L. E., 169
Crawford, L. E., 185
Crawling
and infant spatial coding, 49–51
and location coding, 103
Cross, D., 55
Cruttenden, L., 56
Cue learning, 23, 210
in distance coding, 85
in infants, 43–46, 48, 71
in spatial coding, 16–17, 22, 37
Cultural convention, and spatial language, 180
Cultural transmission
and arithmetical abilities, 219
theory, 10, 11
Dalke, D. E., 157
Data displays, maps as, 169
Day, J., 105
Day, R. H., 50
Dead reckoning, 23, 210
 development of, 102–105, 107
 fine-tuning, 210
 in infants, 46–47, 48
 with place learning, 21, 22
 spatial, 102
 in spatial coding, 19–20, 22, 37
Deaf children, theory of mind deficits in, 221
Dehaene, S., 218
DeLoache, J. S., 85, 86, 153, 155, 156, 160, 161
Description
 spatial, 189, 194–95
 survey vs. route, 195
Detail, in spatial coding, 15
DeVos, J., 78
Diamond, A., 55, 56, 63–65, 67, 87
Direction. See also Maps
 compass, 184
 encoding information for, 27
 and location, 17
 and location coding of infants, 103
 Direction estimates, and maps, 158
 Direction giving, children’s, 204
 Discontinuities, in spatial location, 5
Distance
 children’s judgments of, 125–33
 and location, 17
 and location coding of infants, 103
 on maps, 158
 Distance coding, 18, 27
 in continuous space, 74–84
 with distal landmarks, 84–88
 of infants, 77–83
 of toddlers, 75–77
 Distance-judgment tasks, early competence on, 130
Diwadkar, V., 29
Domain, defined, 3–4
Domain analysis
 advantage of, 225
 language in, 222–23
 nature of, 13
 of space, 3–4
Donaldson, M., 120
Downs, R. M., 145, 157, 166, 174
Down syndrome, 221
Duncan, S., 24, 28, 88, 185
Dynamic systems theory
 of infant location memory, 66
 and spatial development, 143
Egocentric coding, 39
Egocentric-to-allocentric shift
 in older children, 51–52
 spatial coding in, 39–40, 41, 42
Egocentrism, in visual perspective-taking task, 120
Eimas, P. D., 92
Element-to-element correspondence
 in maps, 150, 156–58
 in models, 153–56
Ellis, A. E., 58, 133
Elman, J., 223
Emotional stress, and response learning, 47–48
Environment
 spatial knowledge of, 9
 universality of, 208–209
Euclidean system, of spatial coding, 107
Exclusivity, in spatial language, 183–85
Extent, infant coding of, 93
Fabricius, W. V., 131, 140
Familiarization trials, 81
Fariello, G. R., 94
Federmeier, K. D., 24
Feigenson, L., 218
Fein, G. G., 166, 167
Fine-grained coding
 vs. categorical coding, 80
 in infants, 93
 linguistic marking of, 200
Flavell, E. R., 120
Flavell, J. H., 120
Fodor, J. A., 7, 220
Form, vs. spatiotemporal attributes, 82
Frames of reference
 for acquisition of spatial language, 201–204
 actual vs. imagined, 122
 development of communication using, 204
 egocentric, 188
 and language use, 191
 retinocentric to egocentric shift in, 52
 in spatial language, 188–94, 197
taxonomies for, 189–91
Franklin, N., 36
Friedman, N. P., 196
Friedman, O., 37
Front-back axis, as spatial dimension, 186
Guided participation theory, of spatial competence, 8

Infant location coding
initial studies, 40–42
qualitative shift in, 42–43
infants

cue learning in, 43–46, 48
dead reckoning in, 46–47, 48
distance coding of, 77–83
grammar comprehension of, 223
location coding in, 106
6-month-olds, 52, 58–59, 71
objects individuated by, 82
quantitative development in, 216
response learning in, 42, 43, 59–60
spatial analysis by, 6
spatial coding of, 89, 92–93, 111
spatial representation of, 38
Infant sandbox studies, 75–76, 79. See also Sandbox studies
Infant-to-the-opposite-side paradigm, 43
Infereace abilities
development of, 113–14
and spatial location coding, 109–10
Infinite-regress problem, 31
Inhelder, B., 5, 13, 164
Intelligence
as adaptive characteristic, 6
factor analytic studies of, 2
spatial competence in, 2
Interactionist view
of cognitive change, 224
language in, 223
quantitative development in, 219
of spatial development, 11
of theory of mind, 222
unreflective eclecticism of, 225

Jackendoff, R., 186, 187
Jackson, Donald, 32
James, C. Q., 105
Johnson-Laird, P. N., 189
Jordan, N. C., 216

Kant, I., 2
Karmiloff-Smith, A., 4, 207
Kaufman, J., 58
Klaue, K., 9
Knowles, L., 103
Kolstad, V., 161
Korean language, 198–99
Kosslyn, S. M., 24, 94, 96
Kramer, D. C., 196

Laeng, B., 24
Landau, B., 50, 112, 113, 114, 175, 186, 187
Landmarks. See also Frames of reference
coding distance using, 84–88
Kinds of, 15–16
knowledge of sequence of, 134
and location coding, 18, 101
in navigation, 21, 22
in real-world contexts, 26
in spatial coding, 14
in spatial inference, 117–18
Langston, W., 196
Language
acquisition of, 11, 216
and development, 208
nonlinguistic features of, 192
and spatial coding, 181
Language, spatial
acquisition of, 197–206
categorical nature of, 186
frames of reference in, 188–94, 197
location descriptions in, 179–80
supplementation for, 182, 187–88
Latham, C., 120
Learmonth, A., 118
Left hemisphere
cortical visual tissue in, 34
and spatial coding, 24
Lempers, J. D., 120
Leslie, A. M., 220
Levine, S., 201, 202, 216, 217
Levinson, S. C., 191
Liben, L. S., 96, 114, 145, 157, 166, 170, 174
Linguistics
and cross-linguistic research, 191
and frames of reference, 189
Location
categorical coding of, 25–26
cue learning for, 17
defining, 186
description of, 179, 188–89
in place learning, 17
Locational concepts, children’s expression of, 198
Location coding
age-related improvement in, 100
as automatic process, 105–108
developmental changes in, 105
dissociable systems of, 16
Location memory
developmental improvement in, 99–101
classes of, 59–65
means-ends theories of, 61–62
Location violation, 81
Lockman, J. J., 135, 140
Locomotion, and spatial coding practices, 209. See also Moving
Loftus, G., 184
Logan, G. D., 106
Logical thought, and spatial location coding, 109–10
Looking behavior
infant, 57, 69
and location knowledge, 57–59
Looking time experiments, 62
and distance in continuous space, 83–84
spatial memory in, 59–60
Mahoney, G. J., 203
Maki, R. H., 36
Mammals, spatial inference of, 118
Mandler, J., 105, 199
Mangan, P. A., 85, 86, 87
Map competence, 152
determination of, 147
and developmental theory, 174
Vygotskyan theory of, 176
Mapping, as spatial-symbolic skill, 172–73
Maps
children’s use of, 146–147, 167
compared with models, 149–50
development of use of, 215–16
element-to-element correspondence in, 156–58
geographic knowledge from, 169–70
vs. linguistic description, 148–49
misaligned, 163
as spatial arrays, 147–48
spatial relations in, 158–66
users of, 150–52
Map understanding, development of, 145
Map use, 151–52
alignment in, 162–66
developmental studies of, 152–53
and variable environmental input, 213
Marcovitch, S., 57
Marek, M. N., 36
Marsolek, C. J., 37
Marzolk, D. P., 161
Matthews, A., 58
Maturational arguments, 211
Maturational processes
in spatial development, 212
and theory of mind, 220
Maxwell, S. E., 100
<table>
<thead>
<tr>
<th>Author</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McCabe, B.</td>
<td>24</td>
</tr>
<tr>
<td>McCreary, G. S.</td>
<td>157</td>
</tr>
<tr>
<td>McDonough, L.</td>
<td>45</td>
</tr>
<tr>
<td>McKenzie, B. E.</td>
<td>50</td>
</tr>
<tr>
<td>McNamara, T. P.</td>
<td>29, 37</td>
</tr>
<tr>
<td>Means-ends analysis, of place learning</td>
<td>87</td>
</tr>
<tr>
<td>Means-ends theories, of location memory</td>
<td>61–62</td>
</tr>
<tr>
<td>Meck, W. H.</td>
<td>217</td>
</tr>
<tr>
<td>Meltzoff, A. N.</td>
<td>207</td>
</tr>
<tr>
<td>Memory</td>
<td></td>
</tr>
<tr>
<td>fine-grained, 187</td>
<td></td>
</tr>
<tr>
<td>for location, 57</td>
<td></td>
</tr>
<tr>
<td>of spatial location, 186–87</td>
<td></td>
</tr>
<tr>
<td>working, 203</td>
<td></td>
</tr>
<tr>
<td>Memory/response inhibition theories, 63–65</td>
<td></td>
</tr>
<tr>
<td>Mental rotation ability, 167</td>
<td></td>
</tr>
<tr>
<td>Metric values, in spatial relations, 180, 181</td>
<td></td>
</tr>
<tr>
<td>Millar, S.</td>
<td>114</td>
</tr>
<tr>
<td>Miller, K. F.</td>
<td>128, 130, 132, 133, 189</td>
</tr>
<tr>
<td>Milner, D. A.</td>
<td>58</td>
</tr>
<tr>
<td>Mix, K. S.</td>
<td>217, 218</td>
</tr>
<tr>
<td>Miyake, A.</td>
<td>196</td>
</tr>
<tr>
<td>Model-room task, spatial relations in, 161–62</td>
<td></td>
</tr>
<tr>
<td>Models</td>
<td></td>
</tr>
<tr>
<td>compared with maps, 149–50</td>
<td></td>
</tr>
<tr>
<td>construction of, 170–72</td>
<td></td>
</tr>
<tr>
<td>development of use of, 215–16</td>
<td></td>
</tr>
<tr>
<td>element-to-element correspondence in, 153–56</td>
<td></td>
</tr>
<tr>
<td>linguistic description, 148–49</td>
<td></td>
</tr>
<tr>
<td>misaligned, 163</td>
<td></td>
</tr>
<tr>
<td>as spatial arrays, 147–48</td>
<td></td>
</tr>
<tr>
<td>spatial relations in, 150–51, 158 users of, 150–52</td>
<td></td>
</tr>
<tr>
<td>Moore, M. K.</td>
<td>207, 221</td>
</tr>
<tr>
<td>Moore, M. L.</td>
<td>170</td>
</tr>
<tr>
<td>Morris water maze, 84, 87</td>
<td></td>
</tr>
<tr>
<td>Morrongiello, B. A.</td>
<td>115</td>
</tr>
<tr>
<td>Motor development</td>
<td></td>
</tr>
<tr>
<td>crawling in, 49–51</td>
<td></td>
</tr>
<tr>
<td>and location coding, 88</td>
<td></td>
</tr>
<tr>
<td>Moving, adjusting spatial location when, 20</td>
<td></td>
</tr>
<tr>
<td>Multiple-view theory, 36</td>
<td></td>
</tr>
<tr>
<td>Munakata, Y.</td>
<td>62, 67–68, 70</td>
</tr>
<tr>
<td>Munnich, E.</td>
<td>185, 200</td>
</tr>
<tr>
<td>Nadel, L.</td>
<td>78</td>
</tr>
<tr>
<td>Nativism, 1, 207</td>
<td></td>
</tr>
<tr>
<td>cognitive development in, 220</td>
<td></td>
</tr>
<tr>
<td>input in, 146</td>
<td></td>
</tr>
<tr>
<td>language acquisition in, 224</td>
<td></td>
</tr>
<tr>
<td>map understanding in, 175</td>
<td></td>
</tr>
<tr>
<td>quantitative development in, 216–17</td>
<td></td>
</tr>
<tr>
<td>and spatial development, 6–8, 142–43</td>
<td></td>
</tr>
<tr>
<td>and spatial thinking, 110</td>
<td></td>
</tr>
<tr>
<td>Naveh-Benjamin, M.</td>
<td>106, 171</td>
</tr>
<tr>
<td>Navigation</td>
<td></td>
</tr>
<tr>
<td>inertial, 19–20</td>
<td></td>
</tr>
<tr>
<td>role of place learning in, 21, 22</td>
<td></td>
</tr>
<tr>
<td>skills, 146</td>
<td></td>
</tr>
<tr>
<td>using map for, 167–69</td>
<td></td>
</tr>
<tr>
<td>Naylor, S. J.</td>
<td>37</td>
</tr>
<tr>
<td>Needham, A.</td>
<td>58</td>
</tr>
<tr>
<td>Neiderman, D.</td>
<td>56</td>
</tr>
<tr>
<td>Nelson, C.</td>
<td>58</td>
</tr>
<tr>
<td>Newport, E. L.</td>
<td>113</td>
</tr>
<tr>
<td>Notational system, children’s acquisition of, 218</td>
<td></td>
</tr>
<tr>
<td>Nouns, for object information, 187</td>
<td></td>
</tr>
<tr>
<td>Numbers, in quantitative development, 220</td>
<td></td>
</tr>
<tr>
<td>Object permanence</td>
<td></td>
</tr>
<tr>
<td>early studies of, 44–45</td>
<td></td>
</tr>
<tr>
<td>and spatial development, 212</td>
<td></td>
</tr>
<tr>
<td>Object violation, in location coding studies, 81</td>
<td></td>
</tr>
<tr>
<td>Okamoto, Y.</td>
<td>172, 173</td>
</tr>
<tr>
<td>Olsen, M. G.</td>
<td>101, 105</td>
</tr>
<tr>
<td>Omanson, R. C.</td>
<td>120</td>
</tr>
<tr>
<td>Orientation-independent coding, 35–37</td>
<td></td>
</tr>
<tr>
<td>Paris, S. G.</td>
<td>203</td>
</tr>
<tr>
<td>Park, D. C.</td>
<td>105</td>
</tr>
<tr>
<td>Pederson, E.</td>
<td>192</td>
</tr>
<tr>
<td>Perspective taking</td>
<td></td>
</tr>
<tr>
<td>age and, 125</td>
<td></td>
</tr>
<tr>
<td>analysis of, 123–24</td>
<td></td>
</tr>
<tr>
<td>childhood transition in, 125</td>
<td></td>
</tr>
<tr>
<td>classic, 120, 121</td>
<td></td>
</tr>
<tr>
<td>difficulty in, 120</td>
<td></td>
</tr>
<tr>
<td>Piaget’s analysis of, 119, 122</td>
<td></td>
</tr>
<tr>
<td>spatial, 118–25</td>
<td></td>
</tr>
<tr>
<td>Peters, M.</td>
<td>24</td>
</tr>
</tbody>
</table>
Piaget, J., 1, 5–6, 10, 11, 13, 71, 96, 110
and children’s distance judgments, 126
on concreteness of childhood thought, 130
on cue learning, 48
on developmental changes in coding, 100–101
development theory of, 207
on infant location coding, 53–54, 73, 107–108
on input, 146, 174
on language acquisition, 224
on mechanisms of development, 224
on misaligned arrays, 164
on object permanence, 54, 140
on perspective taking, 122
on quantitative development, 216
on spatial development, 143
on spatial representation, 109, 110
on spatial understanding in infants, 39–42, 48
on understanding scale, 159, 161
visual perspective experiment of, 118–19
Piagetian theory, map understanding in, 174
Pick, H. L., 94, 101, 105, 135, 136, 140
Pictures, as guides to locating objects, 155
Place learning, 23
with dead reckoning, 21, 22
developmental changes in, 86
development of, 74, 211
and distance coding, 84–88
in spatial coding, 17–18, 22, 37
Plumert, J. M., 94
Prepositions, for spatial information, 187
Preschoolers. See also Children
distance judgments of, 126
spatial analysis by, 6
Presson, C. C., 122, 166, 169
Problem-solving theories, of infant location memory, 62–63
Projective system, of spatial coding, 107
Psychological analysis, aim of, 69
Qualitative shift, in infant location coding, 42–43
Quantitative domain, development in, 208, 217
Quantitative understanding, 216
Quinn, P. C., 92, 93
Rank-ordering task, 96
Reaching, in infancy research, 58, 65–66, 69
Reasoning
cultural support of, 177
spatial, 213–14
Relativity, of space, 27, 30–32
Representational insight hypothesis, 155–56, 215
Response learning, 23, 210
and emotional stress, 47–48
in infants, 42, 43, 59–60
initial reinforcement of, 47
in spatial coding, 19, 22, 37
Reweighting, in development of location coding, 106–107
Reznick, J. S., 57, 62, 65
Rider, E. A., 104
Rieser, J., 20, 44, 104, 159
Right hemisphere, and spatial coding, 24
Rinck, M., 196
Rogoff, B., 9, 146
Room-model correspondence, understanding of, 153, 154, 155
Rosser, R., 78
Rotation, dead reckoning following, 102, 104
Route knowledge, 134–35
Route planning
children’s, 140–42
use of maps for, 167–69
Route representations, children’s, 133–38
Russell, J., 144
Sandberg, E. H., 75, 96, 97, 169
Sandbox studies, 75, 76, 79, 89, 93–94, 95, 103, 104, 112, 126, 127
Sapir, E., 181
Scale relations, on maps, 149, 159–61
Schadler, M., 170, 171
Schiff, W., 127, 128
Scholnick, E. K., 166, 167
Screened locations, in location coding studies, 78
Searching
children’s logical, 138–40
encoding distance in, 126
Seeegmüller, D., 105
Semantic primitives hypothesis, in spatial language acquisition, 197–98, 199
Sensorimotor coding, 19
Septohippocampal lesions, and spatial coding, 16
Sequentiality, in spatial language, 194–96, 197
Shanon, B., 194
Shape, attribute of, 33
Shelton, A. L., 37
Sholl, M., 37
Shum, M. S., 169
Siegel, A. W., 35, 99, 100, 101, 134, 170, 171
Siegler, R. S., 53, 133
Simultaneity, in spatial language, 194–96, 197
Situation specificity, of spatial tasks, 9
Size
attribute of, 33
coding, 34
Slobin, D. I., 187
Smith, L., 56, 66, 67, 70
Social class, and arithmetical abilities, 219
Social development, and theory of mind, 221
Social interaction, and spatial language, 180
Somerville, S. C., 139, 140
Sophian, C., 140
Space
and descriptions of location, 179
fundamental nature of, 30
mental subdivision of, 97
projective, 5
as structuring medium, 133
talking about, 181–97, 214
unexplored, 32
Spatial coding, 2, 210–11
accuracy in, 15
analysis of, 37
in A-not-B experiments, 60
categorical vs. fine-grained, 79–80
of children, 10, 101
cue learning in, 16–17, 22, 37
dead reckoning in, 19–20, 22, 37
developmental origins of, 73, 89–93
development of, 110, 113–14
Euclidean system of, 107
evolution of, 14–15
externally referenced, 14–18, 37
fine-grained, 200
hierarchies in, 22–27, 93–99
human updating of, 20
of infants, 11, 89, 92–93
in mature systems, 13–14, 37
mature vs. initial competence in, 71
modular approach to, 116–18
in natural environments, 25–26
place learning in, 17–18, 22, 37
relational analysis of, 30
response learning in, 19, 22, 37
of toddlers, 89, 90–91
topological nature of, 123
two dimensions in, 96–99
types of, 23
viewer-referenced, 18–22, 37
Spatial concepts, children’s understanding of, 205
Spatial development, 207
adapting to environment in, 10
cortical maturation in, 51
and environmental input, 208–209
and experience-expectant interactions, 209
hierarchical coding in, 211–12
language in, 222–24
map use in, 215
nativist approaches to, 6–8
and neurological changes, 7
Piaget’s approach to, 5–6
prelinguistic, 200
and quantitative development, 216–20
talking about space, 214–15
theories of, 4–10, 142
and theory of mind, 220
visual experience in, 51
Vygotskian view of, 8–10
Spatial dimensions, categorization of, 182–85
Spatial environment, and biological preparedness, 10
Spatial functioning, hierarchical coding in, 73
Spatial inference
difficulty in, 137
innate basis for, 112–18
Spatial information
environmentally learned, 35–36
linguistic communication of, 214
symbolically acquired, 35–36
Spatial judgments
asymmetries in, 28
systematic distortions in, 27–30
Spatial knowledge, 1–2, 13
Spatial location
development of knowledge of, 109
symbolic representations of, 145, 145
(see also Maps)
Spatial planning, research on, 140
Spatial reasoning
development of, 213–14
metric representations of, 2
Spatial relations
describing, 197
encoding of, 180
in maps, 150
in model-room task, 161–62
order for, 180
Spatial representation
all-or-none approach to, 111
development of, 110–12
and map competence, 147
models of, 29
perspective taking in, 124
projective, 166
Spatial resolution, degree of, 23
Spatial tasks, errors on, 13
Spatial thought, origins of, 112
Spatial world, hierarchical organization of, 22
Speed, and children’s understanding of distance, 132
Spelke, E. S., 7, 50, 85, 116, 117, 218, 482
Starkey, P., 216, 217
Stea, D., 175
Symbolic systems
cultural support of, 177
for spatial knowledge, 9
Symbols, acquisition of, 158. See also Spatial representation
Target locations, ability to replace, 100
Tarr, M. J., 185
Taxonomies, for frames of reference, 189–91
Taylor, H. A., 37, 195
Technical language, 182
Terms, spatial
acquisition of, 198
for vertical dimensions, 185
Terra incognita, 32
Thelen, E., 66, 67, 70
Theory of mind, 11, 216
Cosmides-Tooby point of view in, 221
desire in, 222
and development, 208

and spatial development, 220–22
“Thick description,” 225
Thinus-Blanc, C., 118
Thought, influence of language on, 181, 193
Three Mountains task, 118, 119, 122
Time, and children’s understanding of distance, 132
Timney, B., 115
Titzer, B., 66
Toddlers
distance coding of, 75–77
spatial coding of, 89, 90–91
spatial inference of, 116
spatial location coding in, 111
Tooby, J., 221
Topological coding, 123
“Topological space,” 74
Translation, dead reckoning following, 102, 104
Tversky, B., 13, 36, 195
Two-choice tasks, solving, 103
Tzeltal language, 191–92, 202
Uttal, D. H., 167, 169
Vasilyeva, M., 160
Vauclair, J., 118
Visual attention, in infancy research, 58, 65–66
Visual experience, and infant spatial coding, 51
Visually impaired individuals, spatial knowledge of, 114. See also Blind children
Visual processing, and spatial location coding, 112
Visuospatial functioning, 33
Vygotsky, L., 8–10, 146
Vygotskyan approach, 1, 207, 216
on language acquisition, 224
map use in, 176
scaffolding metaphor in, 146, 176, 206

Wang, R. F., 116, 117, 118
Way-finding, children’s, 133–38
Wellman, H. M., 54, 55, 56, 66, 130, 131, 132, 140, 141, 167, 222
White, S. H., 35, 99, 134
Whorf, B., 181
Wilcox, T., 78, 82
Williams syndrome, 221
Words, adult use of, 198
Xu, F., 82, 83
Yirmiya, N., 221
Young, D., 100
Zacks, R. T., 105, 106
Zelazo, P. D., 57