Index

Accommodation, 126–128, 129
Activation function, 29–30, 33, 39, 67, 93
Active memory, 14, 134. See also
 Working memory; Short-term memory
ACT-R, 8, 136–137
Agent-based modeling, 251, 263
Analog representations, 117
Anderson, J. A., 44, 66, 68
Anderson, J. R., 8, 250
Applications to education, 2, 251, 260–263
Asigmoid function, 31, 33
Assimilation, 126–129
Attention-mediation theory, 243
Auto-associator, 15, 16, 26, 63, 66–67, 97, 103, 135, 156
Automatization, 131, 134
Backward reasoning, 81
Balance scale, 84, 111, 115–116, 136, 143–144, 146, 152, 170, 185, 202, 212–213, 216, 223–224, 244
Bale, A. C., 66, 156, 223
Batch training, 43
Bates, E. A., 9, 100, 110, 125, 218
Biological plausibility of models, 41, 48, 58, 247–250, 254–258
Brain imaging, 258
Buckingham, D., 63, 67, 126, 203, 205, 210
C4.5, 71, 73, 125, 136–140, 142–144, 146, 148–152, 156–159, 171, 247
Case, R., 125–126, 130–131, 159, 244
Challenge of computational sufficiency, 11
Chauvin, Y., 108, 185, 232
Child-centered education, 262
Chomsky, N., 236
Christiansen, C. H., 156–157, 236–237
Clark, E. V., 106, 209
Cleanup of unit activations, 102, 135
Complementary learning systems, 256
Compositionality, 90, 229–231, 233–234, 259
Computational power, 46, 57, 61, 63, 90, 128, 161–163, 200, 204, 206, 219, 248, 253, 269
Computational psychology, 8–9
Concept learning, 67
Concept-mediation theory, 242
Conceptual mediation, 229, 239–244
Conceptual precursors, 133, 213–216
Constructivism, 161, 229, 245, 252
Content-addressable memory, 91
Contextual cues, 261
Continuous development, 173, 185
Contradictory tendencies, 93, 104–106, 122, 252
Contributions in networks, 119–121
Corrigan, R., 188–189, 194, 200
Cortical layers, 257
Crispness of representations, 229, 237–239, 247
Critical period, 265, 268
Dayan, P., 254–255, 257
Declarative knowledge, 78, 91, 130
Delta rule, 37, 40–41, 67, 247
Developmental tractability, 123
Discontinuous development, 173
Disordered development, 2, 251, 267, 269
Distance, velocity, and time cues, 170, 202–205, 223–224
Distinguishing individuals, 234
Distributed representations, 17, 104
Double dissociation, 268
Dynamic systems, 270
Dyslexia, 102, 104, 260, 267
Encoder networks, 26, 63–67, 154, 231–232, 234, 247, 252, 260
Encoding, 26, 91, 132–133, 135, 204, 214
End of development, 24, 218
Equilibration, 127–128
Equilibrium, 127–128, 175
Equipotentiality of cortex, 167
Exceptions, 76, 93–95, 99, 100–101, 104–105, 122, 252, 256, 268
Fahlman, S. E., 45, 49–50, 57, 59, 62, 64, 257
Feature mapping, 26, 72, 252
Firing-rate coding, 255
Fischer, K. W., 130, 173, 188, 191, 200
Flavell, J. H., 75, 125, 173, 201, 259
Forward reasoning, 81
Fractals, 199
Frames, 9, 18, 228, 230
French, R. M., 47, 66, 153, 170, 231, 239
Functional data analysis, 219, 244
Functionalism, 20
Gage, F., 48, 248, 256
Generalization, 17, 62, 133, 135, 138–139, 154, 159, 162, 169, 229, 239, 248, 261–262, 265
General-purpose learning device, 269
Generative networks, 23, 47, 63, 161, 163, 170, 218, 252, 262
Goldilocks, 46, 61
Gould, E., 48, 175, 248
Graded representations, 21
Graham, P., 81
Habituation, 26, 66, 67, 126, 143, 152–157, 159, 211, 231
Hebb, D. O., 40–41, 67, 111, 247, 265
Herd effect, 45, 50, 59
Hertz, J., 14, 34, 49, 154, 248, 261
Hinton, G. E., 9, 230, 278
Hyperbolic-tangent function, 30

Imitation, 265–267
Imprinting, 265

Incompleteness of computational models, 222, 227–228
Information gain, 140, 148

Innate determinants, 2, 11, 24, 126, 161, 166–169, 172, 212, 245, 251–252, 266–267
Input phase training, 51–54, 57–58, 128, 165, 249
Integration of inputs, 29
Intentionality, 9, 222, 226, 228
Interference, 44, 47, 63, 229, 239, 258–259

Issues in psychological development, 1–2

Johnson, M. N., 9, 20–21, 170, 218, 258, 265, 269
Jordan, M. I., 64

Kail, R., 131, 244
Kaplan, A., 222
Karmiloff-Smith, A., 9, 21, 133, 165, 218, 269
Kempermann, G., 48, 248, 256
Klahr, D., 8, 19, 83–84, 110, 113, 123, 126, 132–133, 143
Knowledge and learning, 24, 251, 258–260
Kohonen, T., 66, 69, 153

Latencies of response, 67, 97–98, 102, 135
Learning and development, 2, 126, 164–165, 172, 217
Learning speed, 45–46, 49–50, 58–62, 261
Length bias, 85, 87, 150, 207, 213
Lesions, 268
Lexical development, 188

Linearly nonseparable problems, 25, 27, 206
Ling, C. X., 99, 136, 143–144, 146, 148, 150, 239
Local representations, 17
Long-term memory, 15, 18, 77, 164, 256

MacWhinney, B., 19, 110
Map reading, 222, 225–227, 253
Marchman, V., 95, 98–100, 105, 218, 267–268
Marcus, G. F., 96, 100, 105, 154–158, 161, 167, 169, 234, 239, 245
McClelland, J. L., 15, 21, 36, 64, 66–67, 95, 101–102, 126, 129, 132, 143–146, 170, 206, 214, 244, 256, 264
Minsky, M. L., 8, 47, 59, 228, 246
Models
atomic, 4–8
in other disciplines, 8
qualities of, 3
versus reality, 9–10
Momentum, 43–45, 50, 168
Moving-target problem, 45, 50–51
Munakata, Y., 21, 170, 215, 264

Neurogenesis, 48, 52, 169, 218, 248, 256
Newell, A., 8, 11–12, 76, 78, 125, 130, 136, 143, 228

Objections to connectionism, 228–247
Objections to learning from error reduction, 247
Objections to modeling, 222, 227–228
Object permanence, 68, 162, 170, 214–216
Ocular-dominance columns, 111
Online sampling of inputs, 263
O'Reilly, R. C., 48, 256, 265
Oshima-Takane, Y., 120–121, 209–210
Output-phase training, 50–51, 53, 56, 58, 119–120, 128, 165
Overextension of meaning, 106–107, 109
Overfitting, 44, 138
Overregularization, 94–96, 100, 105
Oversimplification, 224–227
Parisi, D., 9, 166, 217, 263, 267
Parity problem, 59, 162
Past tense, 91, 93–95, 97–102, 104–105, 267–268
Pattern training, 43
Perceptual-differentiation theory, 243
Perceptual effects, 76, 93, 111–117, 122, 207, 209, 252
Phoneme discrimination, 202, 210–213
Physical growth, 174–175, 179, 195–197, 200–201
Pictorial realism, 222, 226–227, 253
Pinker, S., 91, 94–96, 98, 166, 229, 233–237, 268–269
Plasticity in brain development, 168–170, 212
Plateaus in development, 2, 173, 175–178, 182, 185, 188–189, 194–195, 197, 200–201, 219, 244, 252–253
Plaut, D. C., 101–102, 104
Plunkett, K., 9, 19, 95, 99–100, 105, 110, 170, 185, 218, 232
Pollack, J., 230
Precursors, 2, 21, 133, 174, 213, 215–216, 253
Principal-components analysis, 120
Problem-size effect, 85, 111, 116, 150
Procedural knowledge, 90
Processing speed, 131, 135
Production systems, 77–92, 222, 250
Productivity, 229, 233, 247
Pronouns, 202, 209–210, 223
Propositions, 76–78, 90, 92, 156, 227, 229, 233–235
Pruning, 53, 237, 248, 254, 256–257
Pulse coding, 255
Purpose of development, 216–219, 251
Quickprop, 49–50, 58–59, 247
Quinlan, J. R., 71, 136–138, 140, 142
Quinlan, P. T., 247–248
Quinn, P. C., 66, 153, 231
Raijmakers, M. E. J., 150, 180, 182, 185, 239, 242–244
Ramsay, J. O., 176
Readiness to learn, 133, 213–214
Reading, 83, 101–102, 104, 136, 225, 260, 267
Recognition memory, 67, 153, 157
Recruitment of units or neurons, 50–52, 161, 163, 165, 212, 219, 238, 245, 257, 260–261
Recurrent connections, 64, 134, 215, 232, 254–255
Recursion, 229, 235–236
Reflective abstraction, 127–129, 135
Reinforcement, 260, 263, 266
Repetition, 261
Representational innateness, 166–169, 172
Representational redescription, 133, 135, 165, 237
Rivest, F., 258
Robotics, 263–264
Rosch, E., 237
Rule-assessment methodology, 113–115, 117–118

Rumelhart, D. E., 9, 15, 36–39, 41, 64, 66–67, 95

Sanger, D., 120

Schlesinger, M., 263

Schmidt, W. C., 116, 126, 136, 143–144, 146, 150, 205–206, 239

Score-threshold, 56, 145, 238, 243

Screening effect, 87, 150

Searle, J., 9, 10, 226–227

Seidenberg, M. S., 96–98, 101–102, 156–157

Sejnowski, T. J., 48, 53, 163–164, 169, 218, 248, 270

Selecting a network model, 71

Self-organization, 18, 21, 26, 71, 111, 249

Semantic-feature hypothesis, 106, 108

Seriation, 84, 202, 207–209, 223–224

Shastri, L., 93, 155–156, 235

Shift learning, 238, 243–244, 247

Short-term memory, 256. See also Active memory; Working memory

Sibling/descendant cascade-correlation, 257

Sigmoid function, 30–31, 33, 67

Simple recurrent networks, 26, 63, 64, 155, 156, 157, 236

Sirois, S., 62, 67, 129, 156, 165, 169, 238, 243

Soar, 8, 136–137, 143

Social development, 251, 264–267

Software packages, 44, 73

Spelke, E. S., 166, 215

SRNs, 26, 63, 64, 155, 156, 157, 236

Stage sequences, 202, 205, 210

Starting small, 217, 262

Static networks, 48, 58, 126, 161, 163, 168–171, 206, 217–219, 244–245

Step-size problem, 45, 49–50

Strong AI, 9, 226–227

Supervised learning, 17, 25, 137, 260

Symbols, 3, 76, 90, 92, 99, 154, 157, 222, 226–227, 253

Synapses, 13, 14, 48, 52–53, 249, 256

Synaptogenesis, 48, 52, 164, 169, 200, 218, 248, 256

Synchrony in development, 155, 194, 235, 255

Syntactic development, 189, 194

Systematicity, 229, 231–233

Takane, Y., 120–121, 238

Teacher-centered education, 262

Tetewsky, S., 63

Thagard, P., 2, 19, 75, 227–228

Time, velocity, and distance cues, 170, 202–205, 223–224

Torque-difference effect, 111, 115–116, 118, 136, 143, 146–148, 224

Two-spirals problem, 59, 60, 232–233, 257
Underextension of meaning, 108
Unsupervised learning, 18

Van Gelder, T., 230
Variable binding, 10, 89–90, 93, 155, 247
Variables, 37, 89, 93, 113, 119–120, 122, 147, 155, 202–204, 229, 234–235, 255
Velocity, time, and distance cues, 170, 202–205, 223–224
Von der Marlsburg, C., 68, 235

Weak AI, 9, 226–227
Weight adjustment, 34–36
Werker, J. F., 210, 212
Wilkening, F., 202–203
Word naming, 100–104
Working memory, 14, 26, 77–78, 80, 88–90, 92, 122, 130, 217. See also Active memory; Short-term memory