Index

3CNF-SAT or 3SAT, solving in a cell, 184
3D [optical] memories
branched photocycle (see sequential one-photon)
comparison of bit density with other technology, 195
holographic, 203–204
multiplexing, techniques and necessity for, 211
sequential two-photon, 205
sequential one-photon, 205–208
erasure process, 207, 208
global erasure in prototype system, 209
reading process, 206, 207, 208
wavelengths used in data storage, 206
writing process, 206, 207–208
writing process in prototype system, 209

Acetylcholine sensor. See Biosensors, acetylcholine sensor

Actuators, gel, triggered by Belousov-Zhabotinsky reaction, 72, 73

Adaptation in proteins, 8
Adaptation of system to physical dynamics (artificial evolution), 26
Adenine, binding of in a cleft, 41
Adenosine mono, di, and triphosphate (AMP, ADP, ATP) in molecular recognition, 41, 45–46, 51
ATP use in respiration process, 221–222
Aerial and satellite pictures, image processing of, 119
Alcohol sensor. See Biosensors, alcohol sensor

Algorithmic complexity. See Complexity, algorithmic
Allostery, 36
definition of, 44

Amino acid sensor. See Biosensor, amino acid sensor
Ammonium ion (NH_4^+), 40, 41
effects of binding on pKa, 43
AND gates. See Wave gates, AND
Ant recognition, 41–42
Antenna, in photoluminescence, examples of, 50
Antiport, in membrane transport, 49
Ant paradigm, 85–86
Architectures
compressible, 1, 3–4, 5–6
general purpose, 4
new meaning in biological computers, 8
neuromolecular, 27–28
nonprogrammable, 3–4, 6–8
structurally programmable, 5 (see also compressible)

Arsenic-iodine reaction, used as a coupled reaction-diffusion system, 136

Associative memories, definition of, 203. See also Bacteriorhodopsin, holographic associative memories
ATP. See Adenosine

Autocatalysis. See Self-replication

Bacteriorhodopsin
associative memories (see holographic associative memories; 3D [optical] memories)
comparison of size with present semiconductor elements, 193–194
energy storage use in Halobacterium salinarium, 191, 201
holographic associative memories, 203–204 (see also 3D [optical] memories)
data searches, 203
entering images, 203
holographic properties, 201
photonic properties, 201–203
stability of different states of, 202–203
Behavior, complexity of. See Complexity, behavioral
Belousov-Zhabotinsky reaction (system)
color changes in, 115–116
history of discovery, 108
how a Belousov-Zhabotinsky reaction works, 68–69, 109
pictures of temporal evolution in
basic periodic process in, 110
black-and-white image processing in, 114
changes depending on different starting conditions, 111
enhancement of picture fragments in, 119
extraction of original image from low-quality data, example of, 121
half-tone pictures in, 117, 118
image processing mechanism in, 115, 116
labyrinths, 123, 127, 128, 129, 132
neural networks, similarity to processing in, 98
restoration of individual components in, 120
trigger waves in, 97, 108
trigger waves vs. circular waves, 97
wave-based logical circuit in, 74–75
as system of parallel processors, 66
Binding (vs. recognition), in catalytic cycles, 45

Biocomputers, definition of, 243
Bioelectronics. See also Molecular devices
comparison with semiconductor electronics, advantages of, 192–193
control and power supply for bioelectronics, 101
Biomolecular systems and biomolecular computing

basic principles of, 100–101

genetic engineering, used to improve materials, 212, 217

input of information into, 12–13, 100

output of results, 101

definition of, 92

Biosensors

acetylcholine sensor, 234

alcohol sensor, 230–231

based on microbial yeast, 241

amino acid sensor, 231

ATP sensor, 234

biochemical oxygen demand (BOD) sensor, 241

chemiluminescence-based, 234–235

enzyme-based, 229–235

fish-freshness sensor, 232–233

glucose sensor

commercialization of, 227, 229

enzyme based, 229, 234

general structure of, 224–225

lifetime of, 255

reaction response, 225–226

history of, 226

immunosensor, 236–239

steric hindrance in, 237

QCM based, 236–237

using a surface plasmon resonance (SPR) device, 239

ISFET-based, 233–234

microbial sensors, 239–241

respiration-type, 240

alcohol sensor based on microbial yeast, 241

biochemical oxygen demand (BOD) sensor, 241

microfabrication of, 227, 229, 233–234

molecular recognition material in biosensor

membrane, techniques of immobilization, 226–228

nucleic acid sensors, 231–232

adenosine, 231

guanine, 231

inosine, 231

xanthine, 231

saccharide sensors, 229–230

structure of, 226–227

thermistor-using sensor, 234

transducer

definition of, 225

examples of, 226

tributylene sensor, 234

urea sensor, 232, 234

Bit of information storage vs. area required, trend in years, 195

Blocked cellular automata, 171–172

BOD sensor. See Biosensors, biochemical oxygen demand (BOD) sensor, 241

Boolean circuit, embedded, 73–76

Borromean rings, 172

Brain, organization of, 92

Branched photocycle memory architecture. See 3D (optical) memories, sequential one-photon

Branching points, 129–130, 132

Breathers. See Collision-based computing, breathers in DNA molecules as example of

Brownian motion. See Brownian search

Brownian search, 7

Carbon, molecular properties pertinent to molecular computation, 6–7

Carrier-mediated transport across membrane, 46–49

Cascade systems, in molecular recognition, 44

Cassette mutagenesis, 212–213, 214

Catalysis

ATP hydrolysis as example of, 45–46

in Belousov-Zhabotinsky reaction, 109

link with molecular recognition, 45–46

definition of, 45 (see also Cocatalysis)

Cation, recognition of. See Spherical recognition

Cell, biological, using for computation, 182–184

3CNF-SAT or 3SAT, solving, 184

coding of variables into cell, and problems with, 184

flip-flop in E. coli, 183–184

Cells, definition of in reaction-diffusion system, 102–103

Cellular automata

definition of, 66

DNA, using blocks of as, 171–172

one-dimensional, 79–80

Characterization of types of nonlinear media according to excitation characteristics, 83

Chemical computing. See also Instance machines

architecture-free, 65

structured, 65

Chemical network. See Continuous-flow stirred-tank reactors

Chemical processors. See also Instance machines, Reaction-diffusion systems, and

Belousov-Zhabotinsky reaction architecturally free processors

stirred, 65

nonstirred, 65–66

structured processors, 65

Chiral receptor, 42

Chiral discrimination, 42

element of in chemical system, 54

Cilia, artificial. See Actuators, gel
Index

Classification of nonlinear media, 83–84. See also Complexity
Cleft, in molecular recognition, 35
Cocatalysis, 46–47
Collision-based computing, 73–74, 76–82
breathers in DNA molecules as example of, 77–80
collision of breather with excited impurity, 78, 79
collision of breather with impurity, 77–79
collision of two breathers, 77, 78
dynamic circuits in, 76–82
mobile excitations in molecular arrays as example, 80–82
quasiparticles in gas-discharge systems as example, 82
sources of, 76
Complementarity, kinds of, 35
Complexation, effects of in supramolecular systems, 43–44
Complexity
algorithmic, 1–4
definition of, 93–94
behavioral
definition of, 93
in biological systems, 95–96
of biological systems, estimates of levels of complexity within, 95–96
computational, definition of, 93, 94–95
dynamic (see behavioral)
estimation of, numeric, 94–95
examples of in biological systems, 95–96
nonlinear, and link with high computational complexity, 98–99
sources of, 8
static (see Structural complexity)
structural, definition of, 93
link with behavioral complexity, 96
Compression
effect on adaptability, 5
of function, 3–5
Computational complexity. See Complexity, computational
Computation universality, 73, 76
Computer, deterministic, definition of, 2
Context sensitivity, 6, 12
physiochemical, 12
Continuous-flow stirred-tank reactors, 108, 137–138
Contour enhancement. See Image processing in Belousov-Zhabotinsky reaction
Control complexity. See Complexity, computational
Cosystems, in molecular recognition, 44
Coupled reaction-diffusion systems. See also Belousov-Zhabotinsky systems
chlorite-iodine reaction, used as a coupled reaction-diffusion system, 134–135
efficiency of recalling patterns in actual system, 138
finite-state machines, 135
Hopfield-type neural networks, implementing, 135–136
recognition capabilities of, 133–138
Turing machine, implementing, 135
Crown ether, as example of effects of complexation, 43
Cryptate, 37, 43
CSTR. See Continuous-flow stirred-tank reactors
Data encryption standard (DES). See DNA computation, algorithms
Detecting bisector point between two points of a plane, 67
Deterministic computer, definition of, 2
Diffusion length, diffusion coefficient in reaction-diffusion systems, 103
Directed evolution, 216–217
Discrete Voronoi diagram, 67–68
DNA
breather waves in, 77–80
excitons as equivalents of, 80–81
gates in, 77–80
using blocks of as cellular automata, 171–172
DNA computing, 244
advantages of, 157
algorithms and problems (see also Gene scrambling; RNA editing; Cell computation)
3SAT problem, 167
solving in a cell, 184
addition of two non-negative numbers, 168–171
Boolean circuit, finding all inputs, 163–165
Borromean rings for computation, 172
cellular automata in, 171–172
data encryption standard (DES), 175–176
dynamic programming problems, 176
generate-and-test algorithms, 163–167
graph connectivity problem, 176
Hamiltonian Path Problem, 153–156, 180, 181–182
Knight’s problem, 166–167
matrix multiplication, 174–175
maximal clique problem, 165
programmed chain reactions (algorithms) 168–175
programmed mutagenesis, 172–173
sources of error (see sources of error)
sticker representation, 165–166
Dynamic complexity. See Behavioral complexity

Electron transport path in respiratory chain, 222
Endoreceptor, 35
Endorecognition, 37
Enzyme networks, 22, 23
Enzyme sensors. See Biosensors, enzyme-based

Enzymes
effects of medium on, 36
as examples of molecular recognition, 45
Error filter, self-assembly as example of, 52
Errors, in DNA computation, sources of, 177–180
Evolutionary adaptability, and structural programmability, 5–6
Evolvable hardware, and reaction diffusion materials, 84–85
Excitable medium, excitation waves, 64
characterization of different types of medium, 83–84
Exciton, definition in Scheibe aggregate, 80
analogies to DNA breather gate, 80–81
Exclusive-or. See XOR
Exoreceptor, 35, 37–38

Fish-freshness sensor. See Biosensors, fish-freshness sensor

FKN model, 113, 117
Flip-flop in E. coli, 183–184
Fluidics, 28
Fourier transform holographic (FTH) associative memory, 204. See also Bacteriorhodopsin, holographic associative memories

Gene, using as inverter, 183
flip-flop, using genes to construct in E. coli, 183–184
Generate-and-test algorithms, in DNA computing, 158, 163–167
Gene scrambling, 181–182
Genetic engineering (DNA)
explanation of, 212
mutations in, 212
Genetic engineering of proteins for device applications, 212–217
Grass-fire transformation, 68. See also Prairie-fire transformation

Half-tone picture image processing. See Image processing in Belousov-Zhabotinsky systems
Hamiltonian Path Problem (HPP), 153
Heat bath, as source of complexity, 7–8
Hebbian rule, 136–137
Helicates, 54–56
assembly as example of molecular programming, 56
Holographic associative memories using bacteriorhodopsin, 203–204
Homogeneous neural networks, equations describing, 99
Hybridization. See DNA manipulation, tools used and definitions, anneal
Hydrogen bonding, in molecular recognition, 40
Image processing, simulated, of reaction-diffusion systems, 139–141
contour enhancement, 139–140
skeletonization, 139–140
Image processing in chemical light-sensitive media, history of, 112–113
Image processing in Belousov-Zhabotinsky systems alternation of negative and positive images, 110
in black-and-white images, 114–117
contour enhancement, 110, 118
disappearance of small features of the picture, 110
enhancement of picture fragments in, 118, 119
half-tone pictures, 117–121
overlapping components, 120
restoration of image with defects, 116, 120
satellite images, 119
skeletonization, 116
Image processing in nonstirred chemical processors, 65. See also Image processing in Belousov-Zhabotinsky systems
Immunosensor. See Biosensors, immunosensor
Instance machine, reaction-diffusion processor as example of, 101
Intramolecular cavity, 35
In vitro evolution, 157–158
comparison with in vivo, 182 (see also Directed evolution)
In vivo evolution, 157. See also Cell, biological, using for computation

Knight’s problem, in DNA computing, 166–167

λ parameter, Langton, 84
Labyrinths
branching points in, 129–130, 132
determination of pathway turning points, 131
finding shortest paths in, 121–133
Labyrinth path tracing
effects of background uniformity on, 125–126
effects of branching points on wave propagation, 129–130, 132
efficiency of algorithm, 131–133
examples of labyrinths with different complexity, 123
image storage of, 124–125
organizing the wave-spreading process, 125–126
procedure for finding shortest paths, 127, 130–133
Langmuir-Blodgett film (LB film)
as self-assembling entity, 53, 198
used as rectifier, 242
Life, Conway’s Game of, in connection with collision-based computing, 76
Light-induced phase waves, produced by nonuniform background, 126
Linear recognition of molecules, 42–43
Lock-and-key, 7, 35
Logical gates, constructed using reaction-diffusion materials, 74–76

McCulloch and Pitts neuron, 91, 136
Macrocyclic structures, 37, 39, 41, 42
Macro-micro interface, 10–12. See also Micro-macro interface
Macrotetricalyric structures, 37, 40
Macrocyclic/macropolycyclic structures, definition of, 37
Maximal clique problem, using DNA computing, 165
Medium, effects on molecular recognition, 36
Membrane transport. See Carrier-mediated transport

Micelles, as self-organizing entities, 52–53
Microbial sensors. See Biosensors, microbial sensors
Mitochondria, role in respiration and ATP generation, 222–223
Micro-macro interface, 101. See also Macro-micro interface
Molecular computers, definition of, xii
Molecular devices, 241–243
maximum frequency of operation, 196
Molecular electronics. See also Molecular devices estimate of reliability, 199–200
Molecular gates, 242
switching speeds, 196–197
Molecular memories, comparison with other information storage devices, 195, 197
Molecular recognition, definition of, xv, 32
Molecular systems, self-organization of as example of molecular computation, 56–58
Molecular switch, 242
Moore’s law, 191
Multiple recognition, in molecular recognition, 44
Mutations vs. compressibility of algorithm, 5

NAG (N-acetylglucosamine), in linear recognition, 43
Negative image enhancement, 119
Negative (molecular) recognition, 35
Neutral molecules, in molecular recognition, 40-41
Nonlinear chemical medium, in reaction-diffusion system, 64. See also Belousov-Zhabotinsky system
One-dimensional breather machines. See Cellular automata, one-dimensional; DNA, breather waves in
Optical memories. See 3D (optical) memories
Organic synthesis used in nanoscale engineering, 197–198
Quantum effects in molecular devices, 196–197
effects on reliability, 199–200

Index 255
Palladium processor, as example of chemical computer doing image processing, 68–69
logical gates implemented with, 75–76
Particle guns, 81
PCR. See Polymerase chain reaction
Percolation thresholds, using reaction-diffusion to investigate, 141
Phase waves, velocity of, 125
Photonic molecular devices, 49–51
Plane subdivision, using chemical processor for, 67–68
Pocket, in molecular recognition, 35
Polymerase chain reaction (PCR), 160, 161, 162
sources of error in, 178
used in construction of site-specific mutations, 212–213
Polymer matrices
use of in encapsulating enzymes in biosensors, 228–229
use of in reaction-diffusion systems, 142–144
Positive image enhancement, 119
Positive (molecular) recognition, 35
Prairie fire transformation, 111. See also Grass-fire transformation
Problem size, xiv, 94–95
Programmed chain reaction, 168–171
Programmed mutagenesis. See DNA computing, algorithms

Reaction-diffusion processors
cells of, as primitive processors, 102–103
definition of, 64
Reaction-diffusion paradigm, as possible explanation of human behavior, 85–87
as example of non–von Neumann system, 92
Reaction-diffusion systems. See also Belousov-Zhabotinsky reaction
arsenic-iodide system, 136
chlorite-iodine system, 134–138
equivalence to neural networks, 104, 106, 107
human brain, analogy with, 147–148
simulations of, 138–141
Receptor, definition of, 34
Reliability of molecular electronics, estimation of, 199–201
Respiration process, energy liberation in, 221–222
River quality monitoring using microbial sensors, 241
RNA editing, in cells, 181–182
Robots, reaction-diffusion system used as unconventional controller for, 70–72
artificial cilia, 72–73
coupling with nonstandard actuators, 71–72
light-seeking, explanation of using diffusion waves as controller for, 71
Saccharide sensors. See Biosensors, saccharide sensors
Satellite pictures, image processing of, 119
Scheibe aggregates, 80
Scroll waves, 145
Segmentation of image, 116
Self-assembly, 52–56
of self-sorting helicates, 54–55
Self-organization, in molecular systems, 52
Self-replication in molecular systems, 58
Sequential one-photon memory. See 3D (optical) memories, sequential one-photon
Shortest path in a labyrinth, using Belousov-Zhabotinsky reaction to determine, 121–133
Signal amplification, in chiral system, 54
Simulations, of reaction-diffusion systems, 85–87, 138–141
Simultaneous two-photon memory. See 3D (optical) memories, simultaneous two photon
Single-molecular bit, possibility of, 200–201
Skeletoization of image using chemical computers, 68–70, 116
Spherical recognition, molecular, 38–39
size discrimination in, 38
Spiral waves, 145
Spots on the skin of a cat, image restoration of, 120–121
Staggered extension process (StEP) in DNA manipulation, 217
Static results from a Belousov-Zhabotinsky reaction, using precipitate in skeletonizing, 69
Stationary circuit, examples of chemical-based logical gates
kinetic, 74
waves in excitable media, 75
Stirred-tank reactors. See Continuous-flow stirred tank reactors
Structural complexity. See Complexity, structural
Substrate, definition of, 34
Symport, in membrane transport, 49

Tetrahedral recognition, molecular, 40
Thermodynamics, and molecular computation, 56–58
Thermodynamic limits on computation, xiv
Three-dimensional memory. See 3D (optical) memories
Time, needed in carrying out DNA computing, 156
Time, needed to carry wave through labyrinth, 128
Trade-off principle, xiii–xiv, 4–5, 146–147
Tree graphs, tracing paths in, 122, 123, 127–128
Trigger waves in reaction-diffusion systems, velocity of, 125

Urea sensor. See Biosensors, urea sensor
Valinomycin, as example of macrocycle, 38, 39
Very long range energy transfer (VLRET), 50
in Scheibe aggregates, 80
Von Neumann versus non–von Neumann
computing, 91–93
Voronoi cell, definition of, 67
Voronoi diagram, 85, 86
calculation of using chemical computers, 67–68
pictures of, 69, 70

Wave gates, examples of, 75–76
AND gates, 75
XOR gates, 75–76
Whiplash PCR. See DNA computing, algorithms
and problems, whiplash PCR

XOR, implementation in chemical computing
systems, 14–18, 75–76