Index

Adjacency rule, 130–132
Affordance, 202–204, 206–207, 210, 212
AI. See Artificial intelligence
Allman, John, 124, 134–135
Aristotle, 22, 110
Artificial intelligence, xii–xii, 4, 11–12, 33, 44, 65, 78, 168–169
Autonomy of the special sciences, xv, 139, 153–156
Baillarger’s Law, 137
Basic concepts, 199–202. See also Metaphor
Batterman, Robert, 54, 140, 158–161, 164
Bechtel, William, 48–49, 139
Bickle, John, 139, 143
Block, Ned, 14–15, 17, 20, 170
and Fodor on multiple realizability, 23, 27–28, 30, 32–33, 44, 59, 65
on the problem of the inputs and outputs, 172–174, 182, 221
Body neutrality
and embodied conceptualization, 191, 196–197, 200–201, 204, 206, 211, 213
and embodied thought, 188–190, 213
in relation to the separability thesis, 182–184, 186, 212, 225
as suggested by mind-as-computer view, 169, 170, 175, 181, 185
Brain, as understood in this book, 106
See also Damasio, Antonio; Brain in a vat
Brain evolution, 108–110, 135–136
Brain in a vat
Damasio’s response to, 217–218
and extended mind, 183
relation to the separability thesis, 169, 225
and sense-think-act cycle, 177, 181
Brain morphospace, 74–77
Brain wiring, 124–129, 165
Bridge laws, 141–144, 148–149, 156–157. See also Strong bridge laws
Brooks, Rodney, 176, 180–181
Burge, Tyler, 37
Cascading convergence, 104, 108, 116–117, 121, 135
Causal inheritance principle, 40
Cherniak, Christopher, 130–131
Circumstantial possibility. See Possibility, circumstantial
Cladism, 108
Clark, Andy, 175, 180, 183, 214–215, 219–224
Cognitive science, 166, 168–170, 172, 175, 180–182
Component placement, 129–132, 134
Conduction speed, 132–134
Connectivity, 71, 125–129
Consciousness, 228–229
Constitutivity thesis, 36, 38–39, 40
Constraints, 66, 69, 86, 165–166, 228–229
 on bodies, 167–168
 on brain wiring, 124–129
 on component placement, 130–132
 on conduction speed, 132–133
 and convergent evolution, 103–104, 107, 109, 116–117, 121
 and the evaluation of multiple realizability thesis, xiv, 84
in evolutionary processes, 11–12, 79
historical, 79–87, 109–110, 123, 135
on image-forming eyes, 94, 95, 98, 99, 107
on mammalian homeostasis, 87, 90, 92, 102–103
on sensory systems, 110–120
and topographic maps, 123–124
and trends in brain evolution, 135–137
universal, 79–87, 109–110, 135
Convergence. See also Cascading convergence
 and the eye, 103–104, 99
 neural, 107–108
and topographical organization, 123
and trends in brain evolution, 137
Convergent evolution. See Convergence
Conway Morris, Simon, 73
Copeland, Jack, 176
Core realization. See Realization, core Corkscrews
 and their multiple realizability, 46–51, 56, 161–162
 and R-properties, 53–58, 67
Cricket ears, 189
Cummins, Robert, 20, 45, 52
Damasio, Antonio, 190, 214–220
Dawkins, Richard, 219–220
Design, natural vs. engineered, 11–12, 79, 83–84
Diffraction, 97, 99
Dimensioned view of realizability. See Realization, dimensioned view of
Disparity, 187–188
Dretske, Fred, 77
Dualism, 3–4, 13
Searle's charge against functionalism, 172
Dumais, Susan, 204–205
EC. See Embodied cognition research program
Embodied cognition research program, xii, xv, 168–170, 228
and embodied thought, 191
as opposed to functionalism, 172, 174–175
its response to body neutrality and envatment, 181–185
and the separability thesis, xiii, 185, 225
Embodied conceptualization, 183–185, 190–191, 213
and language comprehension, 202, 211
and the Turing Test, 194
and Damasio, 219
and embodied conceptualization, 202
and envatment, 224
support for, 181–182, 184, 191, 212
and the Turing Test, 195
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embodied thought</td>
<td>182–186, 191, 213</td>
</tr>
<tr>
<td>and Damasio</td>
<td>215</td>
</tr>
<tr>
<td>in perceptual abilities</td>
<td>187–191</td>
</tr>
<tr>
<td>Embodiment</td>
<td>xv, 170, 174, 177, 190, 228</td>
</tr>
<tr>
<td>EMT. See Embodied mind thesis</td>
<td></td>
</tr>
<tr>
<td>Enç, Berent</td>
<td>68, 139</td>
</tr>
<tr>
<td>Entity-bounded realization.</td>
<td>See</td>
</tr>
<tr>
<td>Realization, entity-bounded</td>
<td></td>
</tr>
<tr>
<td>Envatment</td>
<td>169, 183, 225</td>
</tr>
<tr>
<td>and Damasio</td>
<td>215–219</td>
</tr>
<tr>
<td>and the extended mind</td>
<td>220–221, 224</td>
</tr>
<tr>
<td>and the sense-think-act cycle</td>
<td>175, 181</td>
</tr>
<tr>
<td>relation to the separability thesis and the embodied mind thesis, 182, 184</td>
<td></td>
</tr>
<tr>
<td>its support for the separability thesis</td>
<td>213</td>
</tr>
<tr>
<td>Evolution. See also Convergence;</td>
<td>Design, natural vs. engineered of brains, trends in, 135–137 and constraints, 78–84 of mammalian homeostasis, 90, 92–93 and the tape of life, 10–11, 105–106</td>
</tr>
<tr>
<td>Extended mind</td>
<td></td>
</tr>
<tr>
<td>Clark and Chalmers’s defense of, 219–222</td>
<td></td>
</tr>
<tr>
<td>Damasio’s defense of, 215–219 as response to envatment, 183–185, 212</td>
<td></td>
</tr>
<tr>
<td>Wilson’s defense of, 222–224</td>
<td></td>
</tr>
<tr>
<td>External generalizations, 163–164</td>
<td></td>
</tr>
<tr>
<td>Externalism</td>
<td>37–38</td>
</tr>
<tr>
<td>Eye, constraints on its evolution, 94–104, 107, 138</td>
<td></td>
</tr>
<tr>
<td>Fernald, Russell</td>
<td>95, 101–103, 107, 116</td>
</tr>
<tr>
<td>Finlay, Barbara</td>
<td>135</td>
</tr>
<tr>
<td>Fissurization</td>
<td>137</td>
</tr>
<tr>
<td>Flat view of realization. See Realization, flat view of</td>
<td></td>
</tr>
<tr>
<td>Focal length</td>
<td>100–101, 103–104, 107, 116</td>
</tr>
<tr>
<td>Fodor, Jerry</td>
<td>13, 169</td>
</tr>
<tr>
<td>and Block on multiple realizability (see Block, Ned, and Fodor on multiple realizability)</td>
<td></td>
</tr>
<tr>
<td>and functional analysis functionalism, 20–23, 45</td>
<td></td>
</tr>
<tr>
<td>on irrelevance of neuroscience to psychology, 72</td>
<td></td>
</tr>
<tr>
<td>on the reducibility of the special sciences, 6, 139–149, 151–154, 156–162</td>
<td></td>
</tr>
<tr>
<td>Formal system</td>
<td>171</td>
</tr>
<tr>
<td>French, Robert</td>
<td>191–197, 202</td>
</tr>
<tr>
<td>Function</td>
<td></td>
</tr>
<tr>
<td>as defining functional kinds, 47–48, 55</td>
<td></td>
</tr>
<tr>
<td>in discussions of neural plasticity, 60, 63</td>
<td></td>
</tr>
<tr>
<td>etiological, vs. Cummins, 45</td>
<td></td>
</tr>
<tr>
<td>sense of in functional analysis functionalism, 20–21 and structure, 77, 84, 122</td>
<td></td>
</tr>
<tr>
<td>vagueness in descriptions of, 55, 68</td>
<td></td>
</tr>
<tr>
<td>Functional analysis, 20–21, 45, 51–54, 58, 65, 67. See also Task analysis</td>
<td></td>
</tr>
<tr>
<td>Functional analysis functionalism, 20, 23, 26. See also Functionalism</td>
<td></td>
</tr>
<tr>
<td>Functionalism. See also Functional analysis functionalism; Turing machine functionalism and body neutrality, 170–175, 180, 188–189</td>
<td></td>
</tr>
<tr>
<td>Functional isomorphism, 18–19</td>
<td></td>
</tr>
<tr>
<td>Functional kinds, 44, 46–52, 55–57, 60, 67, 160, 166. See also Vagueness of functional kinds</td>
<td></td>
</tr>
<tr>
<td>Generality principle, 145–146, 152</td>
<td></td>
</tr>
<tr>
<td>Ghost in the machine, ix–xi, 4, 166, 227</td>
<td></td>
</tr>
</tbody>
</table>
Gibson, James, 203–204
Gillett, Carl, 35, 39–44, 55–57
Glenberg, Art, 183, 202–212
Gould, Stephen, 10, 79–80, 105, 135

HAL. See Hyperspace analogue to language
Harnad, Stephen, 205
Hatfield, Gary, 52, 227
Haugeland, John, 171, 177–180, 183, 213, 215
Hering, Ewald, 227–229
Historical constraints. See Constraints, historical
Historical possibility. See Possibility, historical
Homeostasis, 87–93, 102–103
Homology, 28, 107, 137
Homoplasy, 28–29, 107, 137
Homunculus, 121–123
Human auditory system, 189
Human body, as understood in this book, 69, 71
Human mind, as understood in this book, 69–70
Human nervous system, as understood in this book, 69, 71
Hyperspace analogue to language, 204–206
Identity theory, 13–16, 24, 26, 175. See also Type-identity theory
Individualism, 36–38
Internal generalizations, 163–164

Jadeite, 147, 157, 163
Jerison, Harry, 135–136
Johnson, Mark, 196–202

Kaas, John, 60, 62, 121, 128, 135
Kaschak, Michael, 210
Kemeny, John, 143, 148–149, 151
Kemp, Thomas, 90–92. See also Homeostasis
Kim, Jaegwon, 39–40, 139–140, 157–159, 161–164

Labiliy (of brain), 59. See also Plasticity
Lakoff, George, 196–202
Land, Michael, 95–96, 100–103, 107, 116
Landauer, Thomas, 204–205
Language comprehension, 202–204, 206, 210–212, 225
Latent semantic analysis, 204–207, 209
Lateral inhibition, 119–120, 124
Lens (of eye), 77, 85. See also Eye, constraints on its evolution; Convergence, and the eye
Lewis, David, 16–18
Lewontin, Richard, 135
Lexical decision task, 192–193, 195–196
Loops of Henle, 89, 92–93, 232n7 LSA. See Latent semantic analysis
Lycan, William, 20, 52

Mach, Ernst, 119
Marr, David, 69
Martin, Robert, 135, 137
Matthiessen, Ludwig, 100–102, 107, 123
Matthiessen’s ratio, 100, 102–103, 116
Maynard Smith, John, 79–80
MCT. See Mental constraint thesis
Index 251

Mental constraint thesis, xi, xii, xiv, 2, 166–167, 227. See also
Convergence, as evidence for the mental constraint thesis;
Likelihood, of the mental constraint thesis
depiction in morphospace of, 72, 75–77
evidence for in the nervous system, 123, 129, 132, 137–138
Metaphor, 196–202, 225
Methodological solipsism, 169
Microreduction. See Reduction, microreduction
Mind. See Human mind
Mind-as-program, 169–172, 174–175, 181, 185, 225
Mind–body relationship, xi, 13. See also Sense-think-act cycle
and the separability thesis, 166–169, 227–228 (see also Problem of the inputs and outputs)
Mind–brain relationship. See also
Ghost in the machine
according to the identity theory, 5, 13–14
and the mental constraint thesis, 166 and the multiple realizability thesis, ix, xi, 3, 5
according to Turing machine functionalism, 14
Miller, George, 70
Modularity, 71, 128–129, 132, 134, 136
Morphospace, 72–76. See also Brain morphospace
Morrell, Pierre, 132–133
MRT. See Multiple realizability thesis
Multiple realizability argument against reduction, 140, 143, 149, 151, 153, 157
Multiple realizability thesis, ix–xiv, xiii, xiv, 1, 70–71
conceptual arguments for, 13–23, 170
constraints on, 83–86, 109, 124
depiction in morphospace of, 72–77
empirical arguments for, 23–33, 44
(see also Likelihood, argument for the multiple realizability thesis)
as an empirical thesis, 8–9, 78–79
evaluating the evidence for, 48, 55, 67–68, 131–132, 134, 138, 228
(see also Convergence, and its relevance for the multiple realizability thesis)
evidence for, xii (see also Likelihood, of the multiple realizability thesis)
and neural plasticity, 59–60, 64–65
its predictions about the mind–brain relationship, xi, 105, 110, 166, 227
its relationship to the separability thesis and the embodied mind
thesis, 167–168
its scope, 6–13
radical, 7–8
SETI, 7–8, 12, 72
standard, 7–8, 12
terrestrial, 11–13, 74, 81–82
weak, 7–8, 12, 72
its significance, 3–6
Mundale, Jennifer, 48–49, 139
Myelin, 71, 132–134
Nagel, Ernst, 143–144, 153, 157
Nephrite, 147, 157, 163
Neural convergence 107–108
Newell, Allen, 170
Newton, Isaac, 227–229
Nilsson, Dan, 95, 98–99
Nomological possibility. See Possibility, nomological
Norton, William, 132–133
Ommatidia, 97
Oppenheim, Paul, 143, 148–154, 156
Parallax, 188–189
Parsimony, 30
Photon noise, 97–99
Physical possibility. See Possibility, physical
Physical realization thesis, 157–158
See also Lability (of brain)
Polger, Thomas, 7, 12, 72, 139
Possibility, 8
 circumstantial, 9, 12, 80 (see also Possibility, historical)
 historical, 9, 12, 80 (see also Possibility, circumstantial)
 logical, 8–9, 22–23, 78–79, 94, 101, 167
 nomological, 8–9, 12, 33, 78, 80, 145 (see also Possibility, physical)
 physical, 22, 78, 90, 165 (see also Possibility, nomological)
Principle of causal individuation of kinds, 157–158
Problem of the inputs and outputs, 173–175
Property identity, 141, 144–146, 148, 150, 152–153, 156
Putnam, Hilary, 37. See also Turing machine functionalism
 and convergence, 30, 59
 his likelihood argument for the multiple realizability thesis, 25–26, 44
 and reductionism, 143, 147–156
Pylyshyn, Zenon, 57, 72
Qualia, 228–229
Radical MRT. See Multiple realizability thesis, radical
Ramsey, Frank, 18
Rating Game, 193–194, 196
Raup, David, 73, 75, 76
Realization
 constraints on, 86, 121, 123, 145, 165–167
 core, 38, 222–224
 differs from causation, 35–36
dimensioned view of, 42–44
entity-bounded, 223
and evatment, 213, 218
flat view of, 40, 42–43
Gillet's views on, 39–44, 57
sameness and difference in, 44–57, 67, 95, 160
standard view of, 39–43
total, 38, 222–224
wide, 223
Wilson's views on, 36–39, 222–223
Receptive fields, 112–121, 134
Reduction, xv, 5–6, 78, 165. See also Reductionism
 and autonomy of the special sciences, 154–156
 Fodor's conception of, 140–148
 Kemeny and Oppenheim's conception of, 148–149
 microreduction, 149–152, 155–156
 Nagel's conception of, 157
 Oppenheim and Putnam's conception of, 150–153
 Reductionism, 139, 140, 145, 152, 156. See also Reduction
 Refractive index, 99–103
 Relative depth, 187–188
 Renormalization strategy, 159–160
 Ringo, James, 125–129, 131
 Robertson, David, 205–209
 R-properties, 52–60, 65–68, 86
 of brains, 105, 108, 111, 121, 124, 137
 and consciousness, 229
 as dimensions of brain morphospaces, 76
 of eyes, 95
 as related to the autonomy of the special sciences, 155–156
 and the renormalization strategy, 159–161
 Ryle, Gilbert, ix–x, 4, 227
Save-wire principle, 130
Schaffner, Kenneth, 143, 149
Index 253

Searle, John, xiii, 20, 171–172, 205, 221
Sense-think-act cycle, 175–177, 180, 183
and envatment, 213, 218–219, 225
(see also Damasio, Antonio)
relation to body neutrality and
envatment, 181–182, 184–186, 191, 212
and the Turing Test, 195–197
SETI MRT. See Multiple realizability
thesis, SETI
Shakey, 176–177, 179–180, 213, 215, 218
Shapiro, Lawrence, 53, 69, 139
Shoemaker, Sydney, 38, 40
Similarity judgments, 46–52
Simon, Herbert, 170
Sober, Elliott, 6, 20, 24, 139, 146, 155
Somatic marker hypothesis, 190
Specialization, 128–129. See also
Modularity
Special sciences, xv, 139–140, 144–145, 152–156, 162–164. See also
Autonomy of the special sciences
Spherical aberration, 100–101, 103
Standard MRT. See Multiple
realizability thesis, standard
Standard view of realization. See
Realization, standard view of
Strong bridge laws, 143–148, 150–151, 156. See also Bridge
laws
Structure (vs. function), 77, 84
Subcognitive associative network, 192–196
Sufficiency thesis, 36, 38, 40
Sulcal complexity, 71, 137
Sur, Mriganka, 63–64
Symbol grounding problem, 206
Task analysis, 51, 56–57, 67, 76, 82, 95, 160–161, 229. See also
Functional analysis
Terrestrial MRT. See Multiple
realizability thesis, terrestrial
Theory replacement, 149, 151
Token identity, 5, 145
Topographic maps, 71, 105, 121, 123–124
Total realization. See Realization,
total
Turing, Alan, 170, 191–192
Turing machine functionalism, 13–15, 18, 20, 26, 45, 170. See also
Functionalism
Turing Test, 191–192, 194–196, 202
Type-identity theory, 4–6, 25. See also
Identity theory
Unification, 5–6, 143, 151–154
Universal constraints. See
Constraints, universal
Universality, 158–161
Vagueness of functional kinds, 47–52, 68
Vogel, Stephen, 81, 83, 134
Weak MRT. See Multiple realizability
thesis, weak
Wide mind, 222–223
Wide realization. See Realization, wide
Wilson, Robert
on extended mind, 214, 219–220, 222–224
on realization, 35–41