Index

Academic integrity, 24–27
Academic values, 25, 58–59, 85–87
Accreditation Board on Engineering and Technology (ABET), 73
Ad Hoc Committee on Access to and Disclosure of Scientific Information (MIT), 243–244, 248
Ad Hoc Faculty-Administration Committee on Indirect Costs and Graduate Student Tuition (MIT), 53
Advocacy for science and technology, 174
Affirmative action, xix–xx, 63, 129–132, 265
Alamo, Jesús del, 221
Alliance for Global Sustainability, 156
Alpha Magnetic Spectrometer, 121
American Council on Education, 131
American dream, 58
Andrew W. Mellon Foundation, 213, 218
Antimatter spectrometer (AMS), 112
Apoptosis, 110
Architecture and planning at MIT, 166–167, 220–221
Arts at MIT, 166
Augustine, Norman R., ix–xxiii
Bakke decision (1978), 130
Baltimore, David, 195–196, 251
Belcher, John, 223
Bennett, William, 19
Berners-Lee, Tim, 257
“Big Dig” project, 269
“Big Science,” xv
Bioterrorism, 245–246
Boldness
Alpha Magnetic Spectrometer and, 121
education and, 123–126
Edwin Land and, 115–117
Human Genome Project and, 115, 120–123
International Thermonuclear Experimental Reactor and, 115, 120
magnetic fusion program and, 119–120
preserving, 134–135
race issues and, 127–134
rejection of, 117
Boldness (cont.)
science and, 117–123
Space Station and, 115, 120–121
student financial aid confrontation with federal government, 272–274
Superconductivity Super collider and, 115, 118–119
technology and, 41, 117–123
Vest and, 271–274
Brain function, 105–106
Brown, Jerry, 220–221
Brown v. Board of Education (1954), 127
Budgets of American universities
diversity and, 42
forces impacting, 39–43
interdisciplinary research and, 42
libraries and, 41
MIT, 45–48, 174–175, 182
national perspective on, 43–44
operating revenue and, 44
student financial aid and, 40
tuition and, 44
Bush, George W., 242
Bush, Vannevar, 200
Business Council for Sustainable Development, 154
Campaign for the Future, xiv, 51–52
Cancer and health, 109–111
Canizares, Claude, 223
Capital campaigns. See
Fundraising campaigns
Center for Advanced Educational Services (CAES), 222
Center for Cold Atoms, 262
Center for Global Change Science, 4–5
Center for Innovation and Product Development (MIT), 147, 205–206
Change
adaptability to, xviii
in America, 7–8, 29–30, 78
cultural, 263–265
education and, 76–78
global environment and, 66–67
institutional, 59–62, 263–265
intellectual, 65–68
organizational, 59–62, 263–265
in public attitudes, 18–19
in research, 76–78, 140–145
rhetoric of, 138
in science, xv–xvi
in student financial aid, 188–189
in technology, xv–xvi
universities and, xviii, 59–62, 76–78, 138–139
Chaos theory, 100–101
Chemical or explosive attacks, threat of, 246
Chomsky, Noam, 61, 223, 257
Circular A–21, 24
Closing of the American Mind, The (Bloom), 19
Cold War, 69–70
Collusion complaint against Ivy League, xi, 17–19, 27–29
Community, term of, 264–265
Computer modeling, 100
Concourse program (MIT), 71
Conflict-of-interest policies, 201–203
Consumer Price Index (CPI), 44, 179
Cornell University, 274
Corporate laboratories, 141–142
Corporate sponsorships, xxi, 19–20, 185–186, 199–207
Corporations. See Industry; specific names
Correa, Charles, 269
Council on Competitiveness, 137
Council on Educational Technology (MIT), 137
Council on the Environment (MIT), 137
Council on the Global Environment, 5
Council on Industry Relations (MIT), 137
Crowley, John C. ("Jack"), 22
Crutzen, Paul, 152
Cultural change, 263–265
Cultural shift in managing student life and learning, 193–194, 198–199
Curricula at MIT, 60, 94–95
Cyberterrorism, 245–246
d’Arbeloff Fund, 224–225, 230
Dartmouth College, 218
Darwin, Charles, xviii
Digital age
Center for the Advanced Educational Services and, 222
distance learning in, 213–221
DSpace and, 221, 226
education in, 211–213, 229–231
future activities and, 228–229
innovation in, fueling, 223–225
intellectual property rights issues and, 225–227
OpenCourseWare and, 211, 213–218, 223, 228–229
Physics Interactive Video Tutor and, 222, 226
sharing laboratories, libraries, and lectures in, 221–223
Singapore-MIT Alliance and, 219–221
Technology Enabled Active Learning/Physics and, 223–224
universities in, 211–213, 229–231
WebLab and, 221
Dingell, John, 17
Distance learning, xii, xxiii, 126, 144, 213–221
Diversity
affirmative action and, xix–xx, 63, 129–132, 265
budgets of American universities and, 42
debate of, xix–xx
education and, 265
MIT and campus and culture, 62–65, 74
Equal Opportunity Committee and, 8
faculty, 30, 61–62, 197
student body, 30, 59–60, 94, 266
perseverance and, 265–267
tensions introduced by, 63–64
Dooley, Tom, 276
Drucker, Peter, 212
DSpace, 221, 226
Du Pont, 265
Earth and its climate, 100–101
Earthquakes, 101
Eco-efficiency, 155
Edgerton, Doc, 113
Education
affirmative action and, 129–132
in America, 259–261
boldness and, 123–126
change and, 76–78
cost of higher, xxi–xxii
in digital age, 211–213, 229–231
Education (cont.)
distance learning, xii, xxiii, 126, 144, 213–221
diversity and, 265
for future, 9–13, 15–16
future of, 217
German model of, 78
GI Bill and, 123, 231
integrative, in engineering, 69–73
Internet and, xii, xiii, 126, 144, 213–221
in Japan, 21
managing, xix
at MIT, 2–3, 9–13, 33–35
Morrill Act and, 123
national, 8–9
story of policy on, x
Endowment at MIT, xiv, 46
Energy and efficient use of resources, 106–108, 119
Engineering
Accreditation Board on Engineering and Technology and, 73
challenges of, 11
integrative education in, 69–73
MIT’s strength in, 165–166
systems, xvi–xvii
women in, 30
Engineering Research Center program (NSF), 147–148
Enrollment management, 189
Entrepreneurship, 203–204
Environment and economy relationship, 149–156
Equal Opportunity Committee (MIT), 8
Ethical actions and decisions, xx, 195–196
Everhart, Tom, 256
Excellence
MIT faculty and, 256–258
universities and, 259–261
Vest and, 256–261
Experimental Study Group program (MIT), 71
Face of America, changing, 7–8, 29–30, 78
Faculty
budgets of American universities and, 40–41
intellectual property rights issues and, xx, 227
MIT compensation costs, 179
diversity of, 30, 61–62, 197
ethics and, 195–196
excellence and, 256–258
Faculty Fellows, 11
responsibility to students, collective, 185, 192–199
success of Institute and, 11
tenure, xx, 258
Faculty Fellows (MIT), 11
Federal government. See also specific departments
catalytic actions of, 19–20
environment and economy and, stewarding, 149–156
evolving roles of, 137–139
innovative system, sustaining America’s, 145–149
investigations of universities by, 19–20
prognosis/diagnosis of, 20–21
knowledge and, creating and sharing, 139–145
MIT and, 21–22, 196
response of, to new era, 90–91
student financial aid grants and, 40
universities and, 79–83
Fink, Gerald R., 249
Foreign students and security
conclusions about, 240–241
MIT context, 237–239
national context, 239–240
overview of situation, 236–237
questions surrounding, xxi–xxii
sensitive areas of study, 242–244
tracking, 241–242
Fraternities, xi–xii
Fundraising campaigns at MIT,
xiv, 51–52, 181
Future, MIT in shaping and
ensuring, 15–16, 55–56
Galileo Space Probe, 120
Gallager, Robert, 257
Gehry, Frank, 220–221, 269
General Institute Requirements,
60
Gene research, 109–110
German model of higher educa-
tion, 78
Gerstner, Lou, 216, 263
GI Bill, 123, 231
Global Change Forum, 152–153
Globalization
dealing with, 4–7
industry and, xvii, 70, 77
Global warming, 100
Gomory, Ralph, 67
Graduate research students, xxii,
23–24, 180
Gray, Paul, 2, 272
Gross domestic product, xv
Growth at MIT, 48–49
Hart-Rudman Commission on
National Security, xix
Haus, Hermann, 134
Higher Education Act, 273
Holl, Steven, 269
Hopwood v. University of Texas,
129–130
Hubble Telescope, 120
Human Genome Project, 115,
120–123
Human systems and organiza-
tions, 102–103
IBM Corporation, 54, 265
I-Campus, 224–225, 230
I-Lab, 221
Incremental actions and decisions,
196–197
Industry. See also specific corpo-
rations
academic values and, 85–87
catalysts and, 108
corporate laboratories, 141–142
corporate sponsorships and,
xxi, 19–20, 185–186, 199–207
entrepreneurship and, 203–204
environment and economy and,
stewarding, 149–156
evolving roles of, 137–139
globalization and, xvii, 70, 77
innovative system and, sustain-
ing America’s, 145–149
knowledge and, creating and
sharing, 139–145
manufacturing and, xvi
quality assurance and, xvi
research and, xvi, 99
response of, to new era, 87–90
science and, 99
universities and, 83–87,
205–207
university partnerships, new,
146–149
work force in 2015, 128–129
Information technology, 5, 68, 103–104. See also Digital age
Innovation, fueling in digital age, 223–225
Institutional change, 59–62, 263–265
Integrated Studies Program (MIT), 71
Intellectual change, 65–68
Intellectual openness, 52–55, 211, 213–218, 221, 223, 226, 228–229
Intellectual property rights issues, xx, 225–227
Interagency Panel on Advanced Science and Security (IPASS), 243
Interdependence, dealing with, 4–7
Interdisciplinary programs at MIT, 42, 67–68, 167
Internationalism, 32–33. See also Globalization
International students. See Foreign students and security
International Thermonuclear Experimental Reactor (ITER), 115, 120
International Traffic in Arms Regulations (ITAR), 250
Internet courses, xii, 144, 213–221
cyberterrorism and, 245–246
education and, xii, 126, 144, 213–221
knowledge sharing and, 137
OpenCourseWare, 211, 213–218, 223, 228–229
Ishii, Hiroshi, 229
Japanese educational system, 21
Japan Program (MIT), 33, 50, 164
Johnson, Howard, 2
Joint Program on the Science and Policy of Global Change (MIT), 152
Jones, Marilee, 191
Ketterle, Wolfgang, 262–263
Kleppner, Dan, 262
Knowledge, creating and sharing, 139–145, 213–218
Kumar, Vijay, 218
Laboratories
 corporate, 141–142
 Lincoln (MIT), 269
 Media Lab (MIT), 229
 Radiation Laboratory (MIT), 262
 sharing, in digital age, 221–223
 South Laboratory (MIT), 269
 WebLab (MIT), 221
 Land, Edwin H., 115–117
 Lander, Eric, 122, 223
 Language and brain function, 105–106
 Leadership
 at MIT, ix–x
 at universities, 39
Leaders for Manufacturing Program (MIT), 72–73, 164
Lean Aerospace Program (MIT), 205–206
Lectures, sharing in digital age, 221–223
Libraries
 budgets of American universities and, 41
 sharing, in digital age, 221–223
 Lincoln Laboratory (MIT), 269
 Lo, Andrew, 219
 Lorenz, Edward N., 61, 100
Magnetic fusion program, 119–120
Maki, Fumihiko, 269
Management at MIT
 improvements in, 174–175
 strength in, 166
 at universities, 39
Mansfield, Edwin, 79–80
Mantis system, 242
Manufacturing, xvi
Mars mission, 225
McLuhan, Marshall, 5
Media Lab (MIT), 229
Mellon Foundation, 213, 218
Memory and brain function,
 105–106
Mens et manus (mind-and-hand)
 philosophy, 16, 153
Meritocracy, xix–xx
Merit student financial aid, xix,
 185–192
Microsoft, 224–225, 230
MIT. See also specific topics, pro-
 grams, and people related to
 academic priorities at, 170–171
 budget, 45–48, 174–175, 182
 campus
 development and renewal,
 168, 267–270
 diversity and, 62–65, 74,
 265–267
 residential life, 172
 “community” and, 264–265
 culture, 53–54, 74
 curricula, 60, 94–95
 diversity, 8, 30, 42, 56, 59–64,
 78, 92
 education at, 2–3, 9–13, 33–35
 endowment at, xiv, 46
facility maintenance and
 renewal at, 180
faculty
 compensation costs, 179
 diversity and, 30, 61–62, 197
 ethics and, 195–196
 excellence and, 256–258
 responsibility to students,
 collective, 185, 192–199
 Vest and, 256–258
women, xii–xiii, 8, 30, 61–64,
 78, 197
federal government and, 21–22,
 196
financial plan for, 176–182
fiscal discipline at, 174–175
fundraising campaigns at, xiv,
 51–52, 181
future of
 building on strengths and,
 164–168
 challenges and, 168–169
 funding for, 176–182
 outlook for, 277
overview, 159–163, 182–183
 path to, 159–160, 169–173
 strategy for, 173–176
 vision and, 163–164
future and, shaping and ensuring,
 15–16, 55–56
growth at, 48–49
indirect cost of research at, 179
infrastructure at, 173
intellectual and social map of,
 74
leadership at, ix–x
learning environment at, 171–172
management at
 improvements in, 174–175
strengths of, 166
as national and international university, 31–33
outlook for, 208, 277
private support for, increasing, 175–176
return on invested assets of, 181
revenue enhancement at, 49–52
science and, 2
student body
diversity of, 30, 59–60, 94, 266
support for, 167–168
student financial aid at, 179, 190–192
technology and, 2
tuition at, 45, 178–179
vision for, 163–164
Mitchell, Bill, 220–221
Modigliani, Franco, 223
Molina, Mario, 152
Morrill Act, 123
Moses, Joel, 73
Multiculturalism. See Diversity

Nanyang Technological University (NTU), 219
National Academy of Engineering, 265
National Academy of Sciences, 265
National Action Council on Minorities in Engineering, 265
National Innovation Summit, 137
National Research Council, 125
National Science Foundation, 147–148
National Security Decision Directive 189 (NSDD 189), 250–251
National University of Singapore (NUS), 219
“Need-based” aid, 186–187
“Need-blind” admission, 186–187, 191
Nerd Pride, 261
New services and budgets of American universities, 42
Next Century, The (Halberstam), 21
Nimble, International, Robust, Resourceful, and Diverse (NIRRD), 261
North Carolina State University, 218, 224
Nuclear weapons and missiles, scientific information about, 245

Office of Management and Budget (OMB), 23–24
OpenCourseWare initiative (OCW) (MIT), 211, 213–218, 223, 228–229
Open Knowledge Initiative (OKI), 218
Openness
intellectual, 52–55
Internet courses and, 213–218
preserving, 134–135
race issues and, 132–134
security and, 234–236, 252
universities and, 132–134
Optimism, 275–277
Organizational change, 59–62, 263–265
Overlap Group (Ivy League), 27, 271

Partnerships, importance of making new, 146–149
Patent rights issues, 85–87
“Path to Our Future” (Vest), 159–160, 169–173
Pearl Harbor attack, 3
Penfield, Paul, 64
Penzias, Arno, 141
Perseverance
 campus renewal and, 267–270
 continuity and change and, 261–262
 cultural and institutional change and, 263–265
 diversity and, 265–267
 scientific accomplishment and, 262–263
 universities and, 261–262
 Vest and, 261–270
Personal Response System (PRS), 228–229
Physical universe, 111–113
Physics Interactive Video Tutor (PIVOT), 222, 226
Policies and Procedures (MIT), 227
Pope, Alexander, 57
President’s Council of Advisors on Science and Technology, x–xi
“Price-fixing” allegations on student financial aid, xi, 17–19, 27–29
Pritchard, Dave, 262–263
Private and public sectors, balancing, 138–139
Privatization, 138–139
Profscam (Sykes), 19
Project Athena, 164
Public attitudes, change in, 18–19
Public Health Security and
 Bioterrorism Preparedness and Response Act of 2002, 247
Public-policy issues, Vest’s solving of, xviii–xxiii. See also specific issues
Quality assurance and industry, xvi
Quality Initiative (MIT), 53
Quantum effects of matter, 262
Quota system, xix–xx, 63
Race issues, 127–134, 267. See also Diversity
 “Racial reasoning,” 63
Radiation Laboratory (MIT), 262
Reagan, Ronald, 250
Reich, Robert, 6
Rensselaer Polytechnic Institute, 224
Report on the Status of Women Faculty in Science at MIT, 197
Research
 annual rate of return on investment in, 80
 balancing, 80–83
 challenges to, 38–39
 change in, 76–78, 140–145
 classified, xx
 conflict-of-interest policies and, 201–203
 corporate laboratories, 141–142
 entrepreneurship and, 203–204
 ethics and, xx
 federal funds for, xx
 gene, 109–110
 income, 45–46
 indirect costs of, 19, 22–24, 179
 industry and, xvi, 99
 intellectual property rights issues and, xx, 225–227
 interdisciplinary, 42, 67–68
 internationalism and, 32–33
 national policy for, 80–81
 patent rights issues, 85–87
 taxpayer funds and, xxii–xxiii
 teaching versus, xx
U.S. Department of Defense and, 82–83
Residence System Steering Committee (MIT), 194
Roche, Kevin, 269
Rogers, William Barton, 60
Roosevelt, Franklin, 200
Rowland, Sherwood, 152

Samuelson, Paul, 223, 257
Schmidheiny, Stephan, 154
Scholarship assistance. See Student financial aid
School of Architecture and Planning (MIT), 166–167, 220–221
School of Engineering (MIT), 72
School of Humanities, Arts and Social Sciences, xiv, 166
School of Management, Sloan (MIT), 72, 203, 218–219
School of Science (MIT), 271
Science
achievement and, xv
advances in, 60–61, 110
advocacy for, 174
Alpha Magnetic Spectrometer, 121
antimatter, 112
apoptosis, 110
betterment of humankind and, xvii–xviii
“Big Science” and, xv
bioterrorism and, 245–246
boldness and, 117–123
brain function, 105–106
cancer and health, 109–111
changes in, xv–xvi
draw to, 98–99
earth and its climate, 100–101
earthquakes, 101
energy and efficient use of resources, 106–108, 119
fusion, 119–120
Galileo Space Probe, 120
global warming, 100
gross domestic product and, xv
historical perspective, 99–100
human systems and organizations, 102–103
industry and, 99
internationalism and, 32–33
language and, 105–106
managing, xix
memory and, 105–106
misconduct in, 25
MIT and, 2, 165
physical universe, 111–113
questions about, shaping good, 113–114
Shoemaker-Levy Comet collision with Jupiter, 120
smallpox virus and, 251
story of, x
superconductivity, 108
thought and, 105–106
trust in, rebuilding, 1, 13–15
using information and information technology, 103–104
women in, 30, 197
Scientific accomplishment and perseverance, 262–263
Scientific materials and information
bioterrorism, 245–246
boundaries and, creating distinct, 250–251
chemical or explosive attacks and, 246
cyberterrorism, 245–246
federal government consultation and, 249–250
nuclear weapons and missiles, 245
Index

publication of, 248–249
select agents and, 247–248
suggestions for, 249–252
terrorism and, 244–245
voluntary agreements and, 251–252

Security
foreign students and
conclusions about, 240–241
MIT context, 237–239
national context, 239–240
overview of situation, 236–237
questions surrounding, xxi–xxii
sensitive areas of study, 242–244
tracking, 241–242
openness and, 234–236, 252

Public Health Security and
Bioterrorism Preparedness and
Response Act of 2002 and, 247

scientific materials and information
bioterrorism, 245–246
boundaries and, creating distinc
t, 250–251
chemical or explosive attacks, 246
cyberterrorism, 245–246
federal government consulta
tion and, 249–250
nuclear weapons and missiles, 245
publication of, 248–249
select agents, 247–248
suggestions for, 249–252
terrorism and, 244–245
voluntary agreements and, 251–252
September 11, 2001 and, 233–234, 236
terrorism and, xix, xxi, 233–234, 236, 244
Select agents, 247–248
Sense of the Future, A
(Bronowski), 25
September 11, 2001, 233–234, 236, 275
Sherman Antitrust Act, 17, 27–28, 271
Shoemaker-Levy Comet collision
with Jupiter, 120
Simonides, Constantine, 272
Singapore-MIT Alliance (SMA), 219–221
Skolnikoff, Eugene B., 31
Sloan Fellows Program, 238
Sloan School of Management
(MIT), 72, 203, 218–219
Smallpox virus, 251
Social sciences at MIT, 166
Solow, Bob, 223
South Laboratory (MIT), 269
Space Station, 115, 120–121
Specialization of disciplines, 66
Sputnik, launching of, 3
Stanford University, 19, 22, 218, 265, 274
Stratton, Jay, 2
Student body at MIT
diversity of, 30, 59–60, 94, 266
support for, 167–168, 193–194, 198–199
Student financial aid
allocation of, debate over, xix
budgets of American universities and, 40
change in, 188–189
discOUNTing, 189
enrollment management and, 189
federal government grants and, 40
for graduate students, 180
Student financial aid (cont.)
merit, xix, 185–192
at MIT, 179, 190–192
“price-fixing” allegations, xi,
17–19, 27–29
subsidy and, 190
U.S. Department of Justice
investigations into, xi, 17–19,
27–29, 196, 271–274
Student life and learning, cultural
shift in managing, 193–194,
198–199
Superconductivity, 108
Superconductivity Supercollider (SSC), 115, 118–119
Sustainable development,
154–156
Systems Design and Management
program (MIT), 205–206, 218
Systems engineering, xvi–xvii

“Tangible Bits” group, 229
Task Force on Student Life and
Learning (MIT), 172, 193, 264
TEAL/Physics, 223–224
Technology. See also Digital age;
Internet
achievement and, xv
advances in, 60–61, 68, 77
advocacy for, 174
betterment of humankind and,
xvii–xviii
boldness and, 117–123
budgets of American universi-
ties and, 41
change in, xv–xvi
cyberterrorism and, 245–246
fusion, 119–120
gross domestic product and, xv
information, 5, 68, 103–104
managing, xix
MIT and, 2
recombinant DNA, 196
story of, x
trust in, rebuilding, 1, 13–15
Technology Alert List, 242
Technology Enabled Active
Learning (TEAL)/Physics,
223–224
Tenure, xx, 258
Terrorism, xix, xxi, 233–234,
236, 244
Thornburgh, Richard, 271–274
Thought and brain function,
105–106
Ting, Samuel, 121
Total Quality Management
(TQM), 53
Tragic Failure (Wicker), 132
Trust, rebuilding, 1, 13–15, 95
Tuition
budgets of American universi-
ties and, 44
of graduate research students,
23–24
at MIT, 45, 178–179
2.70 design contest (MIT), 71

Two Nations (Hacker), 129
Undergraduate Research
Opportunities Program
(UROP) (MIT), 71, 116, 198
Universities. See also Budgets at
American universities; specific
names
academic integrity and, 24–27
challenges facing, 25–26, 38–39,
76, 116
change and, xviii, 59–62, 76–78,
138–139
confidence in, restoring public, 15

corporate sponsorships and, xxi, 19–20, 185–186, 199–207
costs of attending, 39–40
criticism of, 19
in digital age, 211–213, 229–231
dissent and, 25
durability of, 256
environment and economy and, stewarding, 149–156
evolving roles of, 137–139
excellence and, 259–261
federal government and, 79–83
federal investigations of, 19–20
diagnosis/prognosis of, 20–21
finances of, primer on, 189–190
fragmentation and, 65
future of ensuring, 55–56
investing in, 93–95
industry and, 83–87, 205–207
industry partnerships, new, 146–149
innovative system and, sustaining America’s, 145–149
intellectual openness and, 52–55
knowledge and, creating and sharing, 139–145
land-grant, 213
leadership and, 39
as learning institutions, 52–55
management at, 39
mission of higher education and, 78–79
openness and, 132–134
perseverance and, 261–262
race issues and, 127–134
response of, to new era, 91–93
self-governance of, 27
specialization of disciplines and, 66
term of, 64
trust in, rebuilding, 15, 95
values of, 25, 58–59, 85–87
University of Michigan, 265
University of Pennsylvania, 218
University of Texas, 129–130
University of Wisconsin, 218
U.S. Circuit Court in Philadelphia, 273
U.S. Department of Defense, 82–83, 246, 269
U.S. Department of Energy, 246
U.S. State Department, 242
U.S. Supreme Court, 127, 129–130, 265

Vest, Becky, 35
Vest, Charles M. (“Chuck”)
Augustine’s evaluation of, ix–xxiii
boldness and, 271–274
courage of, ix–xii
education in America and, 259–261
excellence and, 256–261
MIT faculty and, 256–258
morality of, xiii
moving on of, 255–258
optimism and, 275–277
outspokenness of, xii–xiii
perseverance and, 261–xiii
public policy issues and, solving, xviii–xxiii
Index

Vest, Charles M. (cont.)
reflections
1996–1997, 137–156
1997–1998, 159–183
1998–1999, 185–208
inaugural address (10 May 1991), 1–16
overview of, xiii–xv, xviii–xxiii

WebLab, 221
Whitehead, Alfred North, 64
Whitehead Institute, 164
Widnall, Sheila E., 27, 243–244
Wiener, Norbert, 252, 257
Wiesner, Jerry, 2
Wilczek, Frank, 223
William and Flora Hewlett Foundation, 213
Williams, Rosalind, 263–264
Winston, Gordon, 190
Women faculty and gender equity, xii–xiii, 8, 30, 61–64, 78, 197
Work force in 2015, 128–129
World War II, 3, 65, 231
World Wide Web. See Internet

Yale, 274

Zuber, Maria, 223