Index

Adenosine tri-phosphate (ATP), 51
Aerodynamic drag, reducing, 187
Aerodynamics, 173–205
Age, effects of on power, 63–64, 75
Airplanes, human-powered, 420–429
Air resistance, 125–127
All-terrain bicycles, 27, 443–444
Aluminum alloy versus steel for frames, 373–376
American Star, 22, 24
Anaerobic threshold (AT), 55, 61
Anaerobic work, 45
Anaerobic work capacity (AWC), 46
Ariel bicycle, 17
ATP. See Adenosine tri-phosphate
Backpedaling brakes, 238–239
Back-to-back tandems, 408
Backward pedaling, 86–88
Balance, how bicycles, 268–270
Balance-gear, Starley’s, 21
Balancing. See Steering and balancing
Bearings, 17, 210, 212–215
Bicycle-riding skills, 271–272
Blimp, human-powered, 427–429
Blood hematocrit, 68
Boats, human-powered, 4
Body-temperature regulation, 117
Boundary-layer suction, 193–196
Brakes, power absorption, 241–243
Braking, 237–261
rear wheel only, 246–248
rim temperatures reached, 256–261
stability during, 243–246
wet-weather, 247–253
Breathing, 73–77
Brittle behavior of materials, 362–365
Brown’s recumbent, 29–30
Bump losses, 132–136
Capstans, 6
Carbohydrate
fat, 56
fuels, 53
glucose, 53
lactate, 53
pyruvate, 53
Challand recumbent, 28–29
Cheetah recumbent bicycle, 405–406
Clayton, Nick, 3
Coaster brakes. See Backpedaling brakes
Cocktail-party effect, 434
Composite bicycles, lightweight, 436–438
Contraction, 50
Convective cooling, 109
Countersteer to generate lean, 270–271
Crank tricycle, 20
Crank length, effect of, 89–91
Creatine phosphate. See Phospho-creatine (PCr)
Critical power (CP), 43
Crosswinds and faired bicycles, 201–203
Da Vinci III helicopter, 424–426
Daedalus aircraft, 422–424
Daedalus flight ergometry, 63–66
Dandy-horse, 11
Decavitator hydrofoil, 416–417
Derailleur gears, history, 26
Design goals for components, setting, 366–368
Differential gear, 21
Diffusion, 173
Disk brakes, 239–241, 440–441
Drafting and side-by-side bicycling, 197–201
Drag coefficients, 175–181
Drag versus Reynolds number, 184–186
Drais, Karl von, 8–11
Draisienne, 11
Drum, cage, Leonardo’s, 6, 8
Dunlop, John Boyd, 26
Dynamic pressure of air, 177
Dynamics of bicycles, 282–285

Eccentric contraction, 50
Electric-assist bicycles, 414–415
Electric transmission, 337–340
Energetics in pedaling, 69
Energy consumption versus distance, 153
Energy expenditure of bicyclists, 77
Energy storage, 167
Equivalent roller to two-roller setup, 211
Ergometers, 38
adaptation, 39
Exercise bicycles, 42
Exposed chains, elimination, 442–443

Facile bicycle, 4
Factors of safety, 354
Fairings, bicycle, 189–193
Fast glycolytic (FG) fibers, 58
Fast oxidative glycolytic (FOG) fibers, 58
Fatigue, low-cycle and high-cycle, 357–360
Fatigue of materials, 356–360
Fat-reducing exercise, 57
Fiber recruitment, 59
Frame design, 381–383
Fuel cells, animals as, 72–73
Future of human-powered vehicles, 431–456

Galleys, oar propelled, 4–5
Gearing and energy efficiency, 165
Gear ratio, effect of, 99–100
Gears
derailleur, 319–321
hub, 318–332
Glycolysis, 53
Gompertz, Lewis, 11–12
Gradients and headwinds, 163
Gyroscopic effects, 268
Hand-cycles, 404, 412
Heat-transfer data, 111–118

Helicopters, 424–427
Helios helicopter, 426–427
Herlihy, David, 3
High bicycle, 4, 19
High-power aerobic metabolism, 61, 66
High-power pedaling, 48
Hillman, William, 17
History of bicycle materials, 353–354
History of bicycles in general, 3–35
History of power transmission, 311–313
Hobby horse, 11
Hot and cold conditions for bicycling, 115
HPV racing, 32
Hub gears, 26
Human factors, feel and control, 301–303
Human power generation, 37–108
Hydraulic actuation, 441–442
Hydrostatic drive, 335–337

IHPVA, 31
Impedance match, gearing, 313–315
Instrumentation for stress, 383–385

Jaray, Paul, recumbent, 31
Johnson, Denis, 11

Kangaroo Dwarf Roadster, 22, 24
Kremer prizes for human-powered aircraft, 420–422
Kyle Edge recumbent bicycle, 406–407

Lactate threshold (LT), 55, 61
Lallement, Pierre, 14–15
Laminar flow, 179
Land vehicles, human-powered, 404–414
Lawn mowers, 400–402
Leonardo's bicycle, 3
Lessing, Hans-Erhard, 3
Lever and linear drives, 93–98
Lever-tension wheel, 17, 18
<table>
<thead>
<tr>
<th>Index</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loading of bicycles, 354–355</td>
<td>354–355</td>
</tr>
<tr>
<td>Local and mean heat transfer, 110</td>
<td>110</td>
</tr>
<tr>
<td>Macmillan, Kirkpatrick, 12</td>
<td>12</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
</tr>
<tr>
<td>properties, 370–371</td>
<td></td>
</tr>
<tr>
<td>and stresses, 353–395</td>
<td></td>
</tr>
<tr>
<td>testing, 365–366</td>
<td></td>
</tr>
<tr>
<td>Material strength, relevant, 355–356</td>
<td></td>
</tr>
<tr>
<td>McCall velocipede, 12</td>
<td>12</td>
</tr>
<tr>
<td>Meyer, Eugene, 17</td>
<td>17</td>
</tr>
<tr>
<td>Michaux, Pierre, 14</td>
<td>14</td>
</tr>
<tr>
<td>Mitochondria, 54</td>
<td>54</td>
</tr>
<tr>
<td>Monoblade forks, 438–440</td>
<td>438–440</td>
</tr>
<tr>
<td>Motor neurons, 48</td>
<td>48</td>
</tr>
<tr>
<td>Muscle fast glycolytic (FG) fibers, 58</td>
<td>58</td>
</tr>
<tr>
<td>Muscle fast oxidative glycolytic (FOG) fibers, 58</td>
<td>58</td>
</tr>
<tr>
<td>Muscle fibers, 48</td>
<td>48</td>
</tr>
<tr>
<td>Muscle-fiber types, 57–59</td>
<td>57–59</td>
</tr>
<tr>
<td>Muscle fuels, six, 51</td>
<td>51</td>
</tr>
<tr>
<td>Muscle functions, 48</td>
<td>48</td>
</tr>
<tr>
<td>Muscle pennation, 49</td>
<td>49</td>
</tr>
<tr>
<td>Muscle slow oxidative (SO) fibers, 57–58</td>
<td>57–58</td>
</tr>
<tr>
<td>Muscle slow-twitch fibers, 58</td>
<td>58</td>
</tr>
<tr>
<td>Musculair aircraft, 422–423</td>
<td>422–423</td>
</tr>
<tr>
<td>Negative work, 50. See also Eccentric contraction</td>
<td>50</td>
</tr>
<tr>
<td>Noncircular cranking, 96–98</td>
<td>96–98</td>
</tr>
<tr>
<td>Nonmetallic components, 376–379</td>
<td>376–379</td>
</tr>
<tr>
<td>Nonround chainwheels, 91–95</td>
<td>91–95</td>
</tr>
<tr>
<td>Notch sensitivity of materials, 364–365</td>
<td>364–365</td>
</tr>
<tr>
<td>Nuescheler's record power, 41, 48</td>
<td>41, 48</td>
</tr>
<tr>
<td>Number of gear ratios, optimum number, 344–348</td>
<td>344–348</td>
</tr>
<tr>
<td>OBLA (onset of blood-lactate accumulation), 55</td>
<td>55</td>
</tr>
<tr>
<td>Omer 3 submarine, human-powered, 420–421</td>
<td>420–421</td>
</tr>
<tr>
<td>On-bicycle power measurement, 40–42, 47, 99–100</td>
<td>40–42, 47, 99–100</td>
</tr>
<tr>
<td>One-way clutches, freewheels, 315</td>
<td>315</td>
</tr>
<tr>
<td>On-road power, 144–149</td>
<td>144–149</td>
</tr>
<tr>
<td>Ordinary bicycle, 4, 19</td>
<td>4, 19</td>
</tr>
<tr>
<td>Oxygen uptake, absorption, 67, 74</td>
<td>67, 74</td>
</tr>
<tr>
<td>PCr. See Phosphocreatine</td>
<td></td>
</tr>
<tr>
<td>Pedaling and hand-cranking, 84</td>
<td>84</td>
</tr>
<tr>
<td>Pedaling forces, 77–83</td>
<td>77–83</td>
</tr>
<tr>
<td>Pedaling position, effects, 72</td>
<td>72</td>
</tr>
<tr>
<td>Pedaling speeds, 78</td>
<td>78</td>
</tr>
<tr>
<td>Pedestrian accelerator, 11</td>
<td>11</td>
</tr>
<tr>
<td>Personal energy requirements, 71</td>
<td>71</td>
</tr>
<tr>
<td>Phosphocreatine (PCr), 51</td>
<td>51</td>
</tr>
<tr>
<td>Pinkerton, John, 3</td>
<td>3</td>
</tr>
<tr>
<td>Plimpton, James, 16</td>
<td>16</td>
</tr>
<tr>
<td>Plunger brakes, 238</td>
<td>238</td>
</tr>
<tr>
<td>Pope, Col. Albert, 16</td>
<td>16</td>
</tr>
<tr>
<td>Positive drives, chains and toothed belts, 316–327</td>
<td>316–327</td>
</tr>
<tr>
<td>Power and speed, 123–171</td>
<td>123–171</td>
</tr>
<tr>
<td>PowerCranks, 87</td>
<td>87</td>
</tr>
<tr>
<td>Power-duration data, 42–45</td>
<td>42–45</td>
</tr>
<tr>
<td>Power equation, 136–140</td>
<td>136–140</td>
</tr>
<tr>
<td>Power for land locomotion, 153–162</td>
<td>153–162</td>
</tr>
<tr>
<td>Power, speed, drag, 150–153</td>
<td>150–153</td>
</tr>
<tr>
<td>Pressure drag, 173</td>
<td>173</td>
</tr>
<tr>
<td>Production data for bicycles, 435</td>
<td>435</td>
</tr>
<tr>
<td>Rail cycles, 408–411</td>
<td>408–411</td>
</tr>
<tr>
<td>Range of variable gears, 348–349</td>
<td>348–349</td>
</tr>
<tr>
<td>Recovery from exertion, 69</td>
<td>69</td>
</tr>
<tr>
<td>Recumbent bicycles, 444–450</td>
<td>444–450</td>
</tr>
<tr>
<td>Recumbent pedaling, 85</td>
<td>85</td>
</tr>
<tr>
<td>Recumbents, history of, 4, 28–32</td>
<td>4, 28–32</td>
</tr>
<tr>
<td>Regulations and incentives, effects of, 431–435</td>
<td>431–435</td>
</tr>
<tr>
<td>Resistance</td>
<td></td>
</tr>
<tr>
<td>effect of road roughness, 226–229</td>
<td>226–229</td>
</tr>
<tr>
<td>effect of tire pressure, 229–230</td>
<td>229–230</td>
</tr>
<tr>
<td>Resistance of firm wheel and firm ground, 218</td>
<td>218</td>
</tr>
<tr>
<td>Resistance of firm wheel and soft ground, 219–221</td>
<td>219–221</td>
</tr>
<tr>
<td>Resistance of soft wheel and firm ground, 222–226</td>
<td>222–226</td>
</tr>
<tr>
<td>Resistances, 123</td>
<td>123</td>
</tr>
<tr>
<td>Respiratory quotient, 67</td>
<td>67</td>
</tr>
<tr>
<td>Reynolds number, 110, 180–182</td>
<td>110, 180–182</td>
</tr>
</tbody>
</table>
Riderless bicycles, experiments with, 279–280
Rim brakes, 241
Roberts, Derek, 3
Rolling resistance, 208–209
and speed, 230–231
and tire construction, 231–233
Roughness, effect on drag, 181, 196
Rowing motions, power produced with, 83–84
Royal Salvo tricycle, 21
Rules of thumb, power, 140–144
Running machine, 4
Saddle height, effect of, 88
Safety bicycles, 23–27
Sawyer, Willard, 13–14
School bus, human-powered, 411–413
Separated flow, 174–175, 180
Shimmy, 291–296
Skating, ice and roller, 10
Skin friction, 173
Skis for riders with handicaps, 404–405
Slope and rolling resistance, 127–132
Slow oxidative (SO) fibers, 57
Slow-twitch fibers, 58
Snek cable drive, 335–336
Snow removers, 401–404
Stability of bicycles, 285–290
Stability of tricycles, 290–291
Standard atmosphere, U.S., 183
Starch, 55
Starley, James, 17
Starley, John Kemp, 4
Steering and balancing, 263–309
effect of bicycle configuration, 272
Steering, broomstick analogy, 266–268
Streamlined shapes, 173–175
Stress raisers, 360–362
Sturmey-Archer hub gears, 26
Submarines, human-powered, 420, 421
Suspension or tension, wheel, 17
Sutton, William, 25
Tambora explosion, 10
Tangent-tension spoking, 17, 19
Tendons, 49
Tension or suspension, wheel, 17
Thermal effects, 109–120
Thomson, R. W., 26
Tires
lateral properties of, 297–301
pneumatic, 25–26, 207–233
Titanium, 380
Tools, human-powered, 400–404
Traction drive, 340–341
Trail, effect of, on balancing, 271–279
Trampelwurm vehicle train, 411–414
Transmission, efficiency, 315–316, 342–345
Transmission of power, 311–352
Transmissions, linear and oscillating, 333–335
Transportation systems for human-powered vehicles (HPVs), 450–456
Treadmills, 7, 9
Tricycles and quadricycles, 450–451
Tricycles, history, 4, 20
Tubeless tires, 438–439
Tubing, hollow, 17
Turbulent flow, 179
Two-joint muscles, 70
Union Cycliste Internationale, 31
Unusual human-powered machines, 399–429
Uphill bicycle assistance, 454–456
Use of bicycles in the United States, 435–436
Varna Mephisto recumbent bicycle, 406
Vel’Eau 12, twelve-person boat, 416–420
Velocar recumbent, 31
VO2max, 68
Wales, I. F. recumbent bicycle, 30
Walking and running energy, 162–163
Water vehicles, human-powered, 416–421
Whatton bars, 22, 23
Wheel resistance, 207
Wheels, stress and stability, 385–392
White Dwarf human-powered blimp, 427–429
Windchill factors, 116
Wind loads from passing vehicles, 196–197
Wing and strut sections, drag, 186
Wingate anaerobic test, 42, 46

Xtraordinary bicycle, 4

Yuri I helicopter, 425–427