Skip navigation
Pages 522-529
First published 30 July 2014

Self-referencing cellular automata: A model of the evolution of information control in biological systems

Theodore P. Pavlic, Alyssa M. Adams, Paul C. W. Davies and Sara Imari Walker

Abstract (Excerpt)

Cellular automata have been useful artificial models for exploring how relatively simple rules combined with spatial memory can give rise to complex emergent patterns. Moreover, studying the dynamics of how rules emerge under artificial selection for function has recently become a powerful tool for understanding how evolution can innovate within its genetic rule space. However, conventional cellular automata lack the kind of state feedback that is surely present in natural evolving systems. Each new generation of a population leaves an indelible mark on its environment and thus affects the selective pressures that shape future generations of that population. To model this phenomenon, we have augmented traditional cellular automata with state-dependent feedback. Rather than generating automata executions from an initial condition and a static rule, we introducemappings which generate iteration rules from the cellular automaton itself. We show that these new automata contain disconnected regions which locally act like conventional automata, thus encapsulating multiple functions into one structure. Consequently, we have provided a new model for processes like cell differentiation. Finally, by studying the size of these regions, we provide additional evidence that the dynamics of self-reference may be critical to understanding the evolution of natural language. In particular, the rules of elementary cellular automata appear to be distributed in the same way as words in the corpus of a natural language.