Qualitative Methods for Reasoning under Uncertainty
Favorite Add to Favorites

Qualitative Methods for Reasoning under Uncertainty

By Simon Parsons

Using qualitative methods to deal with imperfect information.

Overview

Author(s)

Praise

Summary

Using qualitative methods to deal with imperfect information.

In this book Simon Parsons describes qualitative methods for reasoning under uncertainty, "uncertainty" being a catch-all term for various types of imperfect information. The advantage of qualitative methods is that they do not require precise numerical information. Instead, they work with abstractions such as interval values and information about how values change. The author does not invent completely new methods for reasoning under uncertainty but provides the means to create qualitative versions of existing methods. To illustrate this, he develops qualitative versions of probability theory, possibility theory, and the Dempster-Shafer theory of evidence.

According to Parsons, these theories are best considered complementary rather than exclusive. Thus the book supports the contention that rather than search for the one best method to handle all imperfect information, one should use whichever method best fits the problem. This approach leads naturally to the use of several different methods in the solution of a single problem and to the complexity of integrating the results problem to which qualitative methods provide a solution.

Hardcover

Out of Print ISBN: 9780262161688 528 pp. | 9.25 in x 7.5 in

Paperback

$52.00 X | £40.00 ISBN: 9780262528740 528 pp. | 9.25 in x 7.5 in

Endorsements

  • Rather than adopting the usual competitive view of uncertainty modeling and trying to show why one approach is better than another, this book makes a plea for a view that incorporates a wide range of uncertainty theories, focusing on how to make the best of each approach and even showing how to use approaches simultaneously when solving a problem. The book convincingly argues that uncertainty wars make no sense.

    Didier Dubois

    Co-Editor-in Chief, Fuzzy Sets and Systems, Institut de Recherche en Informatique de Toulouse (IRIT), Centre National de la Recherche Scientifique (CNRS)