Noam Nisan

Noam Nisan is Professor at the Institute of Computer Science and Engineering, Hebrew University of Jerusalem.

  • The Elements of Computing Systems

    The Elements of Computing Systems

    Building a Modern Computer from First Principles

    Noam Nisan and Shimon Schocken

    A textbook with a hands-on approach that leads students through the gradual construction of a complete and working computer system including the hardware platform and the software hierarchy.

    In the early days of computer science, the interactions of hardware, software, compilers, and operating system were simple enough to allow students to see an overall picture of how computers worked. With the increasing complexity of computer technology and the resulting specialization of knowledge, such clarity is often lost. Unlike other texts that cover only one aspect of the field, The Elements of Computing Systems gives students an integrated and rigorous picture of applied computer science, as its comes to play in the construction of a simple yet powerful computer system.

    Indeed, the best way to understand how computers work is to build one from scratch, and this textbook leads students through twelve chapters and projects that gradually build a basic hardware platform and a modern software hierarchy from the ground up. In the process, the students gain hands-on knowledge of hardware architecture, operating systems, programming languages, compilers, data structures, algorithms, and software engineering. Using this constructive approach, the book exposes a significant body of computer science knowledge and demonstrates how theoretical and applied techniques taught in other courses fit into the overall picture.

    Designed to support one- or two-semester courses, the book is based on an abstraction-implementation paradigm; each chapter presents a key hardware or software abstraction, a proposed implementation that makes it concrete, and an actual project. The emerging computer system can be built by following the chapters, although this is only one option, since the projects are self-contained and can be done or skipped in any order. All the computer science knowledge necessary for completing the projects is embedded in the book, the only pre-requisite being a programming experience.

    The book's web site provides all tools and materials necessary to build all the hardware and software systems described in the text, including two hundred test programs for the twelve projects. The projects and systems can be modified to meet various teaching needs, and all the supplied software is open-source.

    • Hardcover $50.00 £40.00
    • Paperback $35.00 £28.00
  • Using Hard Problems to Create Pseudorandom Generators

    Using Hard Problems to Create Pseudorandom Generators

    Noam Nisan

    Randomization is an important tool in the design of algorithms, and the ability of randomization to provide enhanced power is a major research topic in complexity theory. Noam Nisan continues the investigation into the power of randomization and the relationships between randomized and deterministic complexity classes by pursuing the idea of emulating randomness, or pseudorandom generation. Pseudorandom generators reduce the number of random bits required by randomized algorithms, enable the construction of certain cryptographic protocols, and shed light on the difficulty of simulating randomized algorithms by deterministic ones. The research described here deals with two methods of constructing pseudorandom generators from hard problems and demonstrates some surprising connections between pseudorandom generators and seemingly unrelated topics such as multiparty communication complexity and random oracles. Nisan first establishes a precise connection between computational complexity and pseudorandom number generation, revealing that efficient deterministic simulation of randomized algorithms is possible under much weaker assumptions than was previously known, and bringing to light new consequences concerning the power of random oracles. Using a remarkable argument based on multiparty communication complexity, Nisan then constructs a generator that is good against all tests computable in logarithmic space. A consequence of this result is a new construction of universal traversal sequences.

    Contents Introduction • Hardness vs. Randomness • Pseudorandom Generators for Logspace and Multiparty Protocols

    • Hardcover $20.00
    • Paperback $20.00 £15.99