Skip navigation

Computational Neuroscience

Computation, Representation, and Dynamics in Neurobiological Systems

For years, researchers have used the theoretical tools of engineering to understand neural systems, but much of this work has been conducted in relative isolation. In Neural Engineering, Chris Eliasmith and Charles Anderson provide a synthesis of the disparate approaches current in computational neuroscience, incorporating ideas from neural coding, neural computation, physiology, communications theory, control theory, dynamics, and probability theory. This synthesis, they argue, enables novel theoretical and practical insights into the functioning of neural systems.

Proceedings of the 2003 Conference

The annual Neural Information Processing (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees—physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications.

The Design of Brain-Like Machines
Edited by Igor Aleksander

McClelland and Rumelhart's Parallel Distributed Processing was the first book to present a definitive account of the newly revived connectionist/neural net paradigm for artificial intelligence and cognitive science. While Neural Computing Architectures addresses the same issues, there is little overlap in the research it reports. These 18 contributions provide a timely and informative overview and synopsis of both pioneering and recent European connectionist research.

Motivated by the remarkable fluidity of memory the way in which items are pulled spontaneously and effortlessly from our memory by vague similarities to what is currently occupying our attention Sparse Distributed Memory presents a mathematically elegant theory of human long term memory.

The Collected Papers of Wilfrid Rall with Commentaries

Wilfrid Rall was a pioneer in establishing the integrative functions of neuronal dendrites that have provided a foundation for neurobiology in general and computational neuroscience in particular. This collection of fifteen previously published papers, some of them not widely available, have been carefully chosen and annotated by Rall's colleagues and other leading neuroscientists.

Proceedings of the 2001 Conference

The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. The conference is interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, vision, speech and signal processing, reinforcement learning and control, implementations, and diverse applications. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented at the 2001 conference.

Circuits and Principles

Neuromorphic engineers work to improve the performance of artificial systems through the development of chips and systems that process information collectively using primarily analog circuits. This book presents the central concepts required for the creative and successful design of analog VLSI circuits. The discussion is weighted toward novel circuits that emulate natural signal processing. Unlike most circuits in commercial or industrial applications, these circuits operate mainly in the subthreshold or weak inversion region.

A System for Brain Modeling

The Neural Simulation Language (NSL), developed by Alfredo Weitzenfeld, Michael Arbib, and Amanda Alexander, provides a simulation environment for modular brain modeling. NSL is an object-oriented language offering object-oriented protocols applicable to all levels of neural simulation. One of NSL's main strengths is that it allows for realistic modeling of the anatomy of macroscopic brain structures.

Perception and Neural Function

Neurophysiological, neuroanatomical, and brain imaging studies have helped to shed light on how the brain transforms raw sensory information into a form that is useful for goal-directed behavior. A fundamental question that is seldom addressed by these studies, however, is why the brain uses the types of representations it does and what evolutionary advantage, if any, these representations confer. It is difficult to address such questions directly via animal experiments.

Foundations of Neural Computation

Graphical models use graphs to represent and manipulate joint probability distributions. They have their roots in artificial intelligence, statistics, and neural networks. The clean mathematical formalism of the graphical models framework makes it possible to understand a wide variety of network-based approaches to computation, and in particular to understand many neural network algorithms and architectures as instances of a broader probabilistic methodology.